7 December 2013

Part I. No solution is needed. All answers must be in simplest form. Each correct answer is worth three points.

1. Find the number of ordered triples (x, y, z) of positive integers satisfying $(x+y)^{z}=64$.
2. What is the largest number of $7 \mathrm{~m} \times 9 \mathrm{~m} \times 11 \mathrm{~m}$ boxes that can fit inside a box of size $17 \mathrm{~m} \times 37 \mathrm{~m} \times 27 \mathrm{~m}$?
3. Let $N=\left(1+10^{2013}\right)+\left(1+10^{2012}\right)+\cdots+\left(1+10^{1}\right)+\left(1+10^{0}\right)$. Find the sum of the digits of N.
4. The sequence $2,3,5,6,7,8,10,11, \ldots$ is an enumeration of the positive integers which are not perfect squares. What is the 150th term of this sequence?
5. Let $P(x)=1+8 x+4 x^{2}+8 x^{3}+4 x^{4}+\cdots$ for values of x for which this sum has finite value. Find $P(1 / 7)$.
6. Find all positive integers m and n so that for any x and y in the interval $[m, n]$, the value of $\frac{5}{x}+\frac{7}{y}$ will also be in $[m, n]$.
7. What is the largest positive integer k such that 27 ! is divisible by 2^{k} ?
8. For what real values of p will the graph of the parabola $y=x^{2}-2 p x+p+1$ be on or above that of the line $y=-12 x+5$?
9. Solve the inequality $\log \left(5^{\frac{1}{x}}+5^{3}\right)<\log 6+\log 5^{1+\frac{1}{2 x}}$.
10. Let p and q be positive integers such that $p q=2^{3} \cdot 5^{5} \cdot 7^{2} \cdot 11$ and $\frac{p}{q}=2 \cdot 5 \cdot 7^{2} \cdot 11$. Find the number of positive integer divisors of p.
11. Let r be some real constant, and $P(x)$ a polynomial which has remainder 2 when divided by $x-r$, and remainder $-2 x^{2}-3 x+4$ when divided by $\left(2 x^{2}+7 x-4\right)(x-r)$. Find all values of r.
12. Suppose $\alpha, \beta \in(0, \pi / 2)$. If $\tan \beta=\frac{\cot \alpha-1}{\cot \alpha+1}$, find $\alpha+\beta$.
13. How many positive integers, not having the digit 1 , can be formed if the product of all its digits is to be 33750 ?
14. Solve the equation $\left(2-x^{2}\right)^{x^{2}-3 \sqrt{2} x+4}=1$.
15. Rectangle $B R I M$ has $B R=16$ and $B M=18$. The points A and H are located on $I M$ and $B M$, respectively, so that $M A=6$ and $M H=8$. If T is the intersection of $B A$ and $I H$, find the area of quadrilateral $M A T H$.
16. Two couples and a single person are seated at random in a row of five chairs. What is the probability that at least one person is not beside his/her partner?
17. Trapezoid $A B C D$ has parallel sides $A B$ and $C D$, with $B C$ perpendicular to them. Suppose $A B=13, B C=16$ and $D C=11$. Let E be the midpoint of $A D$ and F the point on $B C$ so that $E F$ is perpendicular to $A D$. Find the area of quadrilateral $A E F B$.
18. Let x be a real number so that $x+\frac{1}{x}=3$. Find the last two digits of $x^{2^{2013}}+\frac{1}{x^{2013}}$.
19. Find the values of x in $(0, \pi)$ that satisfy the equation

$$
(\sqrt{2014}-\sqrt{2013})^{\tan ^{2} x}+(\sqrt{2014}+\sqrt{2013})^{-\tan ^{2} x}=2(\sqrt{2014}-\sqrt{2013})^{3} .
$$

20. The base $A B$ of a triangular piece of paper $A B C$ is 16 cm long. The paper is folded down over the base, with the crease $D E$ parallel to the base of the paper, as shown. The area of the triangle that projects below the base (shaded region) is 16% that of the area of $\triangle A B C$. What is the length of $D E$, in cm ?

Part II. Show the solution to each item. Each complete and correct solution is worth ten points.

1. Two circles of radius 12 have their centers on each other. As shown in the figure, A is the center of the left circle, and $A B$ is a diameter of the right circle. A smaller circle is constructed tangent to $A B$ and the two given circles, internally to the right circle and externally to the left circle, as shown. Find the radius of the smaller circle.

2. Let a, b and c be positive integers such that $\frac{a \sqrt{2013}+b}{b \sqrt{2013}+c}$ is a rational number. Show that $\frac{a^{2}+b^{2}+c^{2}}{a+b+c}$ and $\frac{a^{3}-2 b^{3}+c^{3}}{a+b+c}$ are both integers.
3. If p is a real constant such that the roots of the equation $x^{3}-6 p x^{2}+5 p x+88=0$ form an arithmetic sequence, find p.
