1. Determine, with proof, the least positive integer n for which there exist n distinct positive integers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ such that

$$
\left(1-\frac{1}{x_{1}}\right)\left(1-\frac{1}{x_{2}}\right)\left(1-\frac{1}{x_{3}}\right) \cdots\left(1-\frac{1}{x_{n}}\right)=\frac{15}{2013} .
$$

2. Let P be a point in the interior of $\triangle A B C$. Extend $A P, B P$, and $C P$ to meet $B C, A C$, and $A B$ at D, E, and F, respectively. If $\triangle A P F, \triangle B P D$, and $\triangle C P E$ have equal areas, prove that P is the centroid of $\triangle A B C$.
3. Let n be a positive integer. The numbers $1,2,3, \ldots, 2 n$ are randomly assigned to $2 n$ distinct points on a circle. To each chord joining two of these points, a value is assigned equal to the absolute value of the difference between the assigned numbers at its endpoints.

Show that one can choose n pairwise non-intersecting chords such that the sum of the values assigned to them is n^{2}.
4. Let a, p, and q be positive integers with $p \leq q$. Prove that if one of the numbers a^{p} and a^{q} is divisible by p, then the other number must also be divisible by p.
5. Let r and s be positive real numbers that satisfy the equation

$$
(r+s-r s)(r+s+r s)=r s .
$$

Find the minimum values of $r+s-r s$ and $r+s+r s$.

Problem 1. Determine, with proof, the least positive integer n for which there exist n distinct positive integers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ such that

$$
\left(1-\frac{1}{x_{1}}\right)\left(1-\frac{1}{x_{2}}\right)\left(1-\frac{1}{x_{3}}\right) \cdots\left(1-\frac{1}{x_{n}}\right)=\frac{15}{2013} .
$$

Solution. Suppose $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are distinct positive integers that satisfy the given equation. Without loss of generality, we assume that $x_{1}<x_{2}<$ $x_{3}<\cdots<x_{n}$. Then

$$
2 \leq x_{1} \leq x_{2}-1 \leq x_{3}-2 \leq \cdots \leq x_{n}-(n-1),
$$

and so $x_{i} \geq i+1$ for $1 \leq i \leq n$.

$$
\begin{aligned}
\frac{15}{2013} & =\left(1-\frac{1}{x_{1}}\right)\left(1-\frac{1}{x_{2}}\right)\left(1-\frac{1}{x_{3}}\right) \cdots\left(1-\frac{1}{x_{n}}\right) \\
& \geq\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right) \cdots\left(1-\frac{1}{n+1}\right) \\
& =\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{n}{n+1} \\
& =\frac{1}{n+1}
\end{aligned}
$$

The preceding computation gives $n \geq 134$.
It remains to show that $n=134$ can be attained. Set $x_{i}=i+1$ for $1 \leq i \leq 133$, and $x_{134}=671$. Then

$$
\left(1-\frac{1}{x_{1}}\right)\left(1-\frac{1}{x_{2}}\right)\left(1-\frac{1}{x_{3}}\right) \cdots\left(1-\frac{1}{x_{n}}\right)=\frac{1}{134} \cdot \frac{670}{671}=\frac{5}{671}=\frac{15}{2013} .
$$

Therefore, the required minimum value of n is 134 . Q.E.D.

Problem 2. Let P be a point in the interior of $\triangle A B C$. Extend $A P, B P$, and $C P$ to meet $B C, A C$, and $A B$ at D, E, and F, respectively. If $\triangle A P F$, $\triangle B P D$, and $\triangle C P E$ have equal areas, prove that P is the centroid of $\triangle A B C$.
Solution. Denote by $(X Y Z)$ the area of $\triangle X Y Z$. Let $w=(A P F)=$ $(B P D)=(C P E), x=(B P F), y=(C P D)$, and $z=(A P E)$.

Having the same altitude, we get

$$
\frac{B D}{D C}=\frac{(B A D)}{(C A D)}=\frac{2 w+x}{w+y+z}
$$

and

$$
\frac{B D}{D C}=\frac{(B P D)}{(C P D)}=\frac{w}{y},
$$

which implies

$$
\begin{equation*}
w y+x y=w^{2}+w z . \tag{1}
\end{equation*}
$$

Similarly, we also get

$$
\begin{equation*}
w z+y z=w^{2}+w x \quad \text { and } \quad w x+x z=w^{2}+w y . \tag{2}
\end{equation*}
$$

Combining equations (1) and (2) gives

$$
\begin{equation*}
x y+y z+x z=3 w^{2} . \tag{3}
\end{equation*}
$$

On the other hand, by Ceva's Theorem, we have

$$
\begin{equation*}
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=\frac{(A P F)}{(B P F)} \cdot \frac{(B P D)}{(C P D)} \cdot \frac{(C P E)}{(A P E)}=\frac{w}{x} \cdot \frac{w}{y} \cdot \frac{w}{z}=1, \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
w^{3}=x y z \tag{5}
\end{equation*}
$$

Applying equation (5) to equation (3) gives

$$
\begin{equation*}
\frac{w}{z}+\frac{w}{x}+\frac{w}{y}=3 . \tag{6}
\end{equation*}
$$

Equations (4) and (6) assert that the geometric mean and the arithmetic mean of the positive numbers $\frac{w}{x}, \frac{w}{y}$, and $\frac{w}{z}$ are equal. By the equality condition of the AM-GM Inequality, it follows that

$$
\frac{w}{x}=\frac{w}{y}=\frac{w}{z}=1 \quad \text { or } \quad w=x=y=z .
$$

Therefore, we conclude that $A F=F B, B D=D C$, and $C E=E A$, which means that P is the centroid of $\triangle A B C$.
Q.E.D.

Problem 3. Let n be a positive integer. The numbers $1,2,3, \ldots, 2 n$ are randomly assigned to $2 n$ distinct points on a circle. To each chord joining two of these points, a value is assigned equal to the absolute value of the difference between the assigned numbers at its endpoints.

Show that one can choose n pairwise non-intersecting chords such that the sum of the values assigned to them is n^{2}.
Solution. First, observe that

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \text { and } \quad \sum_{i=n+1}^{2 n} i=n^{2}+\frac{n(n+1)}{2}
$$

which means that

$$
\sum_{i=n+1}^{2 n} i-\sum_{i=1}^{n} i=n^{2} .
$$

Let $A=\{1,2, \ldots, n\}$ and $B=\{n+1, n+2, \ldots, 2 n\}$. (Here, we do not distinguish the point labeled x and the number x itself.) Because the numbers are arranged on a circle, one can find a pair $\left\{x_{1}, y_{1}\right\}$, where $x_{1} \in A$ and $y_{1} \in B$, such that one arc joining x_{1} and y_{1} contains no other labeled points. One can then remove the chord (including x_{1} and y_{1}) joining these points. Among the remaining labeled points, one can find again a pair $\left\{x_{2}, y_{2}\right\}$, where $x_{2} \in A \backslash\left\{x_{1}\right\}$ and $y_{2} \in B \backslash\left\{y_{1}\right\}$, such that one arc joining x_{2} and y_{2} does not contain a labeled point, and then remove again the chord (including the endpoints) joining x_{2} and y_{2}. Continuing this process, one can find pairs $\left\{x_{3}, y_{3}\right\},\left\{x_{4}, y_{4}\right\}$, and so on, and then remove the chords joining the pairs.

We claim that the removed chords satisfy the required properties. Clearly, there are n such chords. Because no labeled point lies on one arc joining x_{j} and y_{j} for any $1 \leq j \leq n$, the removed chords are non-intersecting. Finally, the sum of the values assigned to the removed chords is

$$
\sum_{j=1}^{n}\left(y_{j}-x_{j}\right)=\sum_{j=1}^{n} y_{j}-\sum_{j=1}^{n} x_{j}=\sum_{i=n+1}^{2 n} i-\sum_{i=1}^{n} i=n^{2} .
$$

This ends the proof of our claim.
Q.E.D.

Problem 4. Let a, p, and q be positive integers with $p \leq q$. Prove that if one of the numbers a^{p} and a^{q} is divisible by p, then the other number must also be divisible by p.
Solution. Suppose that $p \mid a^{p}$. Since $p \leq q$, it follows that $a^{p} \mid a^{q}$, which implies that $p \mid a^{q}$.

Now, suppose that $p \mid a^{q}$, and, on the contrary, $p \nmid a^{p}$. Then there is a prime number r and a positive integer n such that $r^{n} \mid p$ (which implies that $\left.r^{n} \leq p\right)$ and $r^{n} \nmid a^{p}$. Since $p \mid a^{q}$, it follows that $r \mid a$, and so $r^{n} \mid a^{n}$. This means that $p<n$, which gives the following contradiction:

$$
2^{p} \leq r^{p}<r^{n} \leq p .
$$

Therefore, a^{p} must also be divisible by p.
Q.E.D.

Problem 5. Let r and s be positive real numbers that satisfy the equation

$$
(r+s-r s)(r+s+r s)=r s .
$$

Find the minimum values of $r+s-r s$ and $r+s+r s$.
Solution. The given equation can be rewritten into

$$
\begin{equation*}
(r+s)^{2}=r s(r s+1) . \tag{1}
\end{equation*}
$$

Since $(r+s)^{2} \geq 4 r s$ for any $r, s \in \mathbb{R}$, it follows that $r s \geq 3$ for any $r, s>0$. Using this inequality, equation (1), and the assumption that r and s are positive, we have

$$
\begin{aligned}
r+s-r s=\sqrt{r s(r s+1)}-r s & =\frac{1}{\sqrt{1+\frac{1}{r s}}+1} \\
& \geq \frac{1}{\sqrt{1+\frac{1}{3}}+1}=-3+2 \sqrt{3} .
\end{aligned}
$$

Similarly, we also have

$$
r+s+r s \geq 3+2 \sqrt{3}
$$

We show that these lower bounds can actually be attained. Observe that if $r=s=\sqrt{3}$, then

$$
r+s-r s=-3+2 \sqrt{3} \quad \text { and } \quad r+s+r s=3+2 \sqrt{3} .
$$

Therefore, the required minimum values of $r+s-r s$ and $r+s+r s$ are $-3+2 \sqrt{3}$ and $3+2 \sqrt{3}$, respectively.
Q.E.D.

