
15th Philippine Mathematical Olympiad

National Stage, Written Phase

26 January 2013

Time Allotment: 4 hours Each item is worth 8 points.

1. Determine, with proof, the least positive integer n for which there exist
n distinct positive integers x1, x2, x3, . . . , xn such that(

1− 1

x1

)(
1− 1

x2

)(
1− 1

x3

)
· · ·
(

1− 1

xn

)
=

15

2013
.

2. Let P be a point in the interior of 4ABC. Extend AP , BP , and CP to
meet BC, AC, and AB at D, E, and F , respectively. If 4APF , 4BPD,
and 4CPE have equal areas, prove that P is the centroid of 4ABC.

3. Let n be a positive integer. The numbers 1, 2, 3, . . . , 2n are randomly
assigned to 2n distinct points on a circle. To each chord joining two
of these points, a value is assigned equal to the absolute value of the
difference between the assigned numbers at its endpoints.

Show that one can choose n pairwise non-intersecting chords such that
the sum of the values assigned to them is n2.

4. Let a, p, and q be positive integers with p ≤ q. Prove that if one of the
numbers ap and aq is divisible by p, then the other number must also be
divisible by p.

5. Let r and s be positive real numbers that satisfy the equation

(r + s− rs)(r + s + rs) = rs.

Find the minimum values of r + s− rs and r + s + rs.



Problem 1. Determine, with proof, the least positive integer n for which
there exist n distinct positive integers x1, x2, x3, . . . , xn such that(

1− 1

x1

)(
1− 1

x2

)(
1− 1

x3

)
· · ·
(

1− 1

xn

)
=

15

2013
.

Solution. Suppose x1, x2, x3, . . . , xn are distinct positive integers that satisfy
the given equation. Without loss of generality, we assume that x1 < x2 <
x3 < · · · < xn. Then

2 ≤ x1 ≤ x2 − 1 ≤ x3 − 2 ≤ · · · ≤ xn − (n− 1),

and so xi ≥ i + 1 for 1 ≤ i ≤ n.

15

2013
=

(
1− 1

x1

)(
1− 1

x2

)(
1− 1

x3

)
· · ·
(

1− 1

xn

)
≥
(

1− 1

2

)(
1− 1

3

)(
1− 1

4

)
· · ·
(

1− 1

n + 1

)
=

1

2
· 2

3
· 3

4
· · · n

n + 1

=
1

n + 1

The preceding computation gives n ≥ 134.
It remains to show that n = 134 can be attained. Set xi = i + 1 for

1 ≤ i ≤ 133, and x134 = 671. Then(
1− 1

x1

)(
1− 1

x2

)(
1− 1

x3

)
· · ·
(

1− 1

xn

)
=

1

134
· 670

671
=

5

671
=

15

2013
.

Therefore, the required minimum value of n is 134. q.e.d.



Problem 2. Let P be a point in the interior of 4ABC. Extend AP , BP ,
and CP to meet BC, AC, and AB at D, E, and F , respectively. If 4APF ,
4BPD, and4CPE have equal areas, prove that P is the centroid of4ABC.

Solution. Denote by (XY Z) the area of 4XY Z. Let w = (APF ) =
(BPD) = (CPE), x = (BPF ), y = (CPD), and z = (APE).

Having the same altitude, we get

BD

DC
=

(BAD)

(CAD)
=

2w + x

w + y + z

and
BD

DC
=

(BPD)

(CPD)
=

w

y
,

which implies

3 January 2013

wy + xy = w2 + wz. (1)

Similarly, we also get

wz + yz = w2 + wx and wx + xz = w2 + wy. (2)

Combining equations (1) and (2) gives

xy + yz + xz = 3w2. (3)

On the other hand, by Ceva’s Theorem, we have

AF

FB
· BD

DC
· CE

EA
=

(APF )

(BPF )
· (BPD)

(CPD)
· (CPE)

(APE)
=

w

x
· w
y
· w
z

= 1, (4)

or
w3 = xyz. (5)

Applying equation (5) to equation (3) gives

w

z
+

w

x
+

w

y
= 3. (6)

Equations (4) and (6) assert that the geometric mean and the arithmetic
mean of the positive numbers w

x , w
y , and w

z are equal. By the equality condition
of the AM-GM Inequality, it follows that

w

x
=

w

y
=

w

z
= 1 or w = x = y = z.

Therefore, we conclude that AF = FB, BD = DC, and CE = EA, which
means that P is the centroid of 4ABC. q.e.d.



Problem 3. Let n be a positive integer. The numbers 1, 2, 3, . . . , 2n are
randomly assigned to 2n distinct points on a circle. To each chord joining
two of these points, a value is assigned equal to the absolute value of the
difference between the assigned numbers at its endpoints.

Show that one can choose n pairwise non-intersecting chords such that the
sum of the values assigned to them is n2.

Solution. First, observe that

n∑
i=1

i =
n(n + 1)

2
and

2n∑
i=n+1

i = n2 +
n(n + 1)

2
,

which means that
2n∑

i=n+1

i−
n∑

i=1

i = n2.

Let A = {1, 2, . . . , n} and B = {n + 1, n + 2, . . . , 2n}. (Here, we do not
distinguish the point labeled x and the number x itself.) Because the numbers
are arranged on a circle, one can find a pair {x1, y1}, where x1 ∈ A and
y1 ∈ B, such that one arc joining x1 and y1 contains no other labeled points.
One can then remove the chord (including x1 and y1) joining these points.
Among the remaining labeled points, one can find again a pair {x2, y2}, where
x2 ∈ A \ {x1} and y2 ∈ B \ {y1}, such that one arc joining x2 and y2 does
not contain a labeled point, and then remove again the chord (including the
endpoints) joining x2 and y2. Continuing this process, one can find pairs
{x3, y3}, {x4, y4}, and so on, and then remove the chords joining the pairs.

We claim that the removed chords satisfy the required properties. Clearly,
there are n such chords. Because no labeled point lies on one arc joining xj
and yj for any 1 ≤ j ≤ n, the removed chords are non-intersecting. Finally,
the sum of the values assigned to the removed chords is

n∑
j=1

(yj − xj) =
n∑

j=1

yj −
n∑

j=1

xj =
2n∑

i=n+1

i−
n∑

i=1

i = n2.

This ends the proof of our claim. q.e.d.



Problem 4. Let a, p, and q be positive integers with p ≤ q. Prove that if
one of the numbers ap and aq is divisible by p, then the other number must
also be divisible by p.

Solution. Suppose that p | ap. Since p ≤ q, it follows that ap | aq, which
implies that p | aq.

Now, suppose that p | aq, and, on the contrary, p - ap. Then there is a
prime number r and a positive integer n such that rn | p (which implies that
rn ≤ p) and rn - ap. Since p | aq, it follows that r | a, and so rn | an. This
means that p < n, which gives the following contradiction:

2p ≤ rp < rn ≤ p.

Therefore, ap must also be divisible by p. q.e.d.



Problem 5. Let r and s be positive real numbers that satisfy the equation

(r + s− rs)(r + s + rs) = rs.

Find the minimum values of r + s− rs and r + s + rs.

Solution. The given equation can be rewritten into

(r + s)2 = rs(rs + 1). (1)

Since (r + s)2 ≥ 4rs for any r, s ∈ R, it follows that rs ≥ 3 for any r, s > 0.
Using this inequality, equation (1), and the assumption that r and s are
positive, we have

r + s− rs =
√

rs(rs + 1)− rs =
1√

1 + 1
rs + 1

≥ 1√
1 + 1

3 + 1
= −3 + 2

√
3.

Similarly, we also have

r + s + rs ≥ 3 + 2
√

3.

We show that these lower bounds can actually be attained. Observe that
if r = s =

√
3, then

r + s− rs = −3 + 2
√

3 and r + s + rs = 3 + 2
√

3.

Therefore, the required minimum values of r + s − rs and r + s + rs are
−3 + 2

√
3 and 3 + 2

√
3, respectively. q.e.d.


