

 $15^{\rm th}$ Philippine Mathematical Olympiad

National Stage, Written Phase 26 January 2013

Time Allotment: 4 hours

Each item is worth 8 points.

1. Determine, with proof, the least positive integer n for which there exist n distinct positive integers $x_1, x_2, x_3, \ldots, x_n$ such that

$$\left(1-\frac{1}{x_1}\right)\left(1-\frac{1}{x_2}\right)\left(1-\frac{1}{x_3}\right)\cdots\left(1-\frac{1}{x_n}\right) = \frac{15}{2013}$$

- **2.** Let P be a point in the interior of $\triangle ABC$. Extend AP, BP, and CP to meet BC, AC, and AB at D, E, and F, respectively. If $\triangle APF$, $\triangle BPD$, and $\triangle CPE$ have equal areas, prove that P is the centroid of $\triangle ABC$.
- **3.** Let n be a positive integer. The numbers $1, 2, 3, \ldots, 2n$ are randomly assigned to 2n distinct points on a circle. To each chord joining two of these points, a value is assigned equal to the absolute value of the difference between the assigned numbers at its endpoints.

Show that one can choose n pairwise non-intersecting chords such that the sum of the values assigned to them is n^2 .

- 4. Let a, p, and q be positive integers with $p \leq q$. Prove that if one of the numbers a^p and a^q is divisible by p, then the other number must also be divisible by p.
- 5. Let r and s be positive real numbers that satisfy the equation

$$(r+s-rs)(r+s+rs) = rs.$$

Find the minimum values of r + s - rs and r + s + rs.

Problem 1. Determine, with proof, the least positive integer n for which there exist n distinct positive integers $x_1, x_2, x_3, \ldots, x_n$ such that

$$\left(1-\frac{1}{x_1}\right)\left(1-\frac{1}{x_2}\right)\left(1-\frac{1}{x_3}\right)\cdots\left(1-\frac{1}{x_n}\right) = \frac{15}{2013}.$$

Solution. Suppose $x_1, x_2, x_3, \ldots, x_n$ are distinct positive integers that satisfy the given equation. Without loss of generality, we assume that $x_1 < x_2 < x_3 < \cdots < x_n$. Then

$$2 \le x_1 \le x_2 - 1 \le x_3 - 2 \le \dots \le x_n - (n-1),$$

and so $x_i \ge i+1$ for $1 \le i \le n$.

$$\frac{15}{2013} = \left(1 - \frac{1}{x_1}\right) \left(1 - \frac{1}{x_2}\right) \left(1 - \frac{1}{x_3}\right) \cdots \left(1 - \frac{1}{x_n}\right) \\ \ge \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{4}\right) \cdots \left(1 - \frac{1}{n+1}\right) \\ = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{n}{n+1} \\ = \frac{1}{n+1}$$

The preceding computation gives $n \ge 134$.

It remains to show that n = 134 can be attained. Set $x_i = i + 1$ for $1 \le i \le 133$, and $x_{134} = 671$. Then

$$\left(1-\frac{1}{x_1}\right)\left(1-\frac{1}{x_2}\right)\left(1-\frac{1}{x_3}\right)\cdots\left(1-\frac{1}{x_n}\right) = \frac{1}{134}\cdot\frac{670}{671} = \frac{5}{671} = \frac{15}{2013}.$$

Q.E.D.

Therefore, the required minimum value of n is 134.

Problem 2. Let *P* be a point in the interior of $\triangle ABC$. Extend *AP*, *BP*, and *CP* to meet *BC*, *AC*, and *AB* at *D*, *E*, and *F*, respectively. If $\triangle APF$, $\triangle BPD$, and $\triangle CPE$ have equal areas, prove that *P* is the centroid of $\triangle ABC$.

Solution. Denote by (XYZ) the area of $\triangle XYZ$. Let w = (APF) = (BPD) = (CPE), x = (BPF), y = (CPD), and z = (APE).

Having the same altitude, we get

$$\frac{BD}{DC} = \frac{(BAD)}{(CAD)} = \frac{2w+x}{w+y+z}$$

and

$$\frac{BD}{DC} = \frac{(BPD)}{(CPD)} = \frac{w}{y}$$

which implies

$$wy + xy = w^2 + wz. (1)$$

Similarly, we also get

$$wz + yz = w^2 + wx$$
 and $wx + xz = w^2 + wy$. (2)

Combining equations (1) and (2) gives

$$xy + yz + xz = 3w^2. (3)$$

On the other hand, by Ceva's Theorem, we have

$$\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = \frac{(APF)}{(BPF)} \cdot \frac{(BPD)}{(CPD)} \cdot \frac{(CPE)}{(APE)} = \frac{w}{x} \cdot \frac{w}{y} \cdot \frac{w}{z} = 1, \quad (4)$$

or

$$w^3 = xyz. (5)$$

Applying equation (5) to equation (3) gives

$$\frac{w}{z} + \frac{w}{x} + \frac{w}{y} = 3. \tag{6}$$

Equations (4) and (6) assert that the geometric mean and the arithmetic mean of the positive numbers $\frac{w}{x}$, $\frac{w}{y}$, and $\frac{w}{z}$ are equal. By the equality condition of the AM-GM Inequality, it follows that

$$\frac{w}{x} = \frac{w}{y} = \frac{w}{z} = 1 \quad \text{or} \quad w = x = y = z.$$

Therefore, we conclude that AF = FB, BD = DC, and CE = EA, which means that P is the centroid of $\triangle ABC$. Q.E.D.

Problem 3. Let n be a positive integer. The numbers $1, 2, 3, \ldots, 2n$ are randomly assigned to 2n distinct points on a circle. To each chord joining two of these points, a value is assigned equal to the absolute value of the difference between the assigned numbers at its endpoints.

Show that one can choose n pairwise non-intersecting chords such that the sum of the values assigned to them is n^2 .

Solution. First, observe that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{and} \quad \sum_{i=n+1}^{2n} i = n^2 + \frac{n(n+1)}{2},$$

which means that

$$\sum_{i=n+1}^{2n} i - \sum_{i=1}^{n} i = n^2.$$

Let $A = \{1, 2, ..., n\}$ and $B = \{n + 1, n + 2, ..., 2n\}$. (Here, we do not distinguish the point labeled x and the number x itself.) Because the numbers are arranged on a circle, one can find a pair $\{x_1, y_1\}$, where $x_1 \in A$ and $y_1 \in B$, such that one arc joining x_1 and y_1 contains no other labeled points. One can then remove the chord (including x_1 and y_1) joining these points. Among the remaining labeled points, one can find again a pair $\{x_2, y_2\}$, where $x_2 \in A \setminus \{x_1\}$ and $y_2 \in B \setminus \{y_1\}$, such that one arc joining x_2 and y_2 does not contain a labeled point, and then remove again the chord (including the endpoints) joining x_2 and y_2 . Continuing this process, one can find pairs $\{x_3, y_3\}, \{x_4, y_4\}$, and so on, and then remove the chords joining the pairs.

We claim that the removed chords satisfy the required properties. Clearly, there are n such chords. Because no labeled point lies on one arc joining x_j and y_j for any $1 \leq j \leq n$, the removed chords are non-intersecting. Finally, the sum of the values assigned to the removed chords is

$$\sum_{j=1}^{n} (y_j - x_j) = \sum_{j=1}^{n} y_j - \sum_{j=1}^{n} x_j = \sum_{i=n+1}^{2n} i - \sum_{i=1}^{n} i = n^2.$$

This ends the proof of our claim.

Q.E.D.

Problem 4. Let a, p, and q be positive integers with $p \leq q$. Prove that if one of the numbers a^p and a^q is divisible by p, then the other number must also be divisible by p.

Solution. Suppose that $p \mid a^p$. Since $p \leq q$, it follows that $a^p \mid a^q$, which implies that $p \mid a^q$.

Now, suppose that $p \mid a^q$, and, on the contrary, $p \nmid a^p$. Then there is a prime number r and a positive integer n such that $r^n \mid p$ (which implies that $r^n \leq p$) and $r^n \nmid a^p$. Since $p \mid a^q$, it follows that $r \mid a$, and so $r^n \mid a^n$. This means that p < n, which gives the following contradiction:

$$2^p \le r^p < r^n \le p.$$

Therefore, a^p must also be divisible by p.

Q.E.D.

Problem 5. Let r and s be positive real numbers that satisfy the equation

$$(r+s-rs)(r+s+rs) = rs.$$

Find the minimum values of r + s - rs and r + s + rs.

Solution. The given equation can be rewritten into

$$(r+s)^2 = rs(rs+1).$$
 (1)

Since $(r+s)^2 \ge 4rs$ for any $r, s \in \mathbb{R}$, it follows that $rs \ge 3$ for any r, s > 0. Using this inequality, equation (1), and the assumption that r and s are positive, we have

$$r + s - rs = \sqrt{rs(rs+1)} - rs = \frac{1}{\sqrt{1 + \frac{1}{rs} + 1}}$$
$$\ge \frac{1}{\sqrt{1 + \frac{1}{3} + 1}} = -3 + 2\sqrt{3}.$$

Similarly, we also have

$$r+s+rs \ge 3+2\sqrt{3}.$$

We show that these lower bounds can actually be attained. Observe that if $r = s = \sqrt{3}$, then

$$r + s - rs = -3 + 2\sqrt{3}$$
 and $r + s + rs = 3 + 2\sqrt{3}$.

Therefore, the required minimum values of r + s - rs and r + s + rs are $-3 + 2\sqrt{3}$ and $3 + 2\sqrt{3}$, respectively. Q.E.D.