$12^{\text {th }}$ Philippine Mathematical Olympiad
Qualifying Stage
24 October 2009

Part I. Each correct answer is worth two points.

1. If $\underbrace{2009+2009+\cdots+2009}_{2009 \text { terms }}=2009^{x}$, find the value of x.
(a) 2
(b) 3
(c) 2009
(d) 2010
2. What is the least positive difference between two three-digit numbers if one number has all the digits 2,4 , and 6 , while the other has all the digits 1,2 , and 9 ?
(a) 72
(b) 54
(c) 48
(d) 27
3. Which of the following numbers is closest to one of the roots of the equation $x^{2}-10000 x-10000=0$?
(a) 10001
(b) 5000
(c) 100
(d) 25
4. The ratio of the areas of two squares is $3: 4$. What is the ratio of the lengths of their corresponding diagonals?
(a) $1: 2$
(b) $3: 4$
(c) $2: 3$
(d) $\sqrt{3}: 2$
5. In $\triangle A B C$, let P be a point on segment $B C$ such that $B P: P C=1: 4$. Find the ratio of the area of $\triangle A C P$ to that of $\triangle A B C$.
(a) $1: 4$
(b) $1: 5$
(c) $3: 4$
(d) $4: 5$
6. In how many ways can three distinct numbers be selected from the set $\{1,2,3, \ldots, 9\}$ if the product of these numbers is divisible by 21 ?
(a) 15
(b) 16
(c) 17
(d) 18
7. If $|2 x-3| \leq 5$ and $|5-2 y| \leq 3$, find the least possible value of $x-y$.
(a) -5
(b) 0
(c) -1
(d) 5
8. Define the operations $\boldsymbol{\circ}$ and \odot by

$$
a \varrho b=a b-a-b \quad \text { and } \quad a \circlearrowright b=a^{2}+b-a b
$$

What is the value of $(-3 \odot 4)-(-3 \& 4)$?
(a) 38
(b) 12
(c) -12
(d) -38
9. Solve for x in the following system of equations:

$$
\left\{\begin{array}{l}
\log x+\log y=2 \\
\log y+\log z=7 \\
\log z+\log x=3
\end{array}\right.
$$

(a) 10
(b) 1
(c) 0.1
(d) 0.01
10. If $a+1=b-2=c+3=d-4$, which is the smallest among the numbers a, b, c, and d ?
(a) a
(b) b
(c) c
(d) d
11. Solve for x in the inequality $5^{x} \geq 25^{2 x}$.
(a) $x \leq 1$
(b) $x \leq 0$
(c) $x \geq 0$
(d) $x \geq 1$
12. Today, 24 October 2009, is a Saturday. On what day of the week will 10001 days from now fall?
(a) Saturday
(b) Monday
(c) Thursday
(d) Friday
13. The lines $2 x+a y+2 b=0$ and $a x-y-b=1$ intersect at the point $(-1,3)$. What is $2 a+b$?
(a) -6
(b) -4
(c) 4
(d) 6
14. Let x be a real number that satisfies the equation

$$
16\left(\log _{9} x\right)^{4}=\left(\log _{3} x^{3}\right)^{2}+10
$$

Determine $\left(\log _{9} x\right)^{2}$.
(a) 10
(b) $\sqrt{10}$
(c) $\frac{5}{2}$
(d) $\frac{\sqrt{5}}{2}$
15. Let r and s be the roots of the equation $x^{2}-2 m x-3=0$. If $r+s^{-1}$ and $s+r^{-1}$ are the roots of the equation $x^{2}+p x-2 q=0$, what is q ?
(a) 1
(b) $\frac{2}{3}$
(c) -3
(d) $-\frac{4}{3}$

Part II. Each correct answer is worth three points.
16. On the blackboard, 1 is initially written. Then each of ten students, one after another, erases the number he finds on the board, and write its double plus one. What number is erased by the tenth student?
(a) $2^{11}-1$
(b) $2^{11}+1$
(c) $2^{10}-1$
(d) $2^{10}+1$
17. For how many real numbers x is $\sqrt{2009-\sqrt{x}}$ an integer?
(a) 0
(b) 45
(c) 90
(d) 2009
18. How many distinct natural numbers less than 1000 are multiples of 10 , 15,35 , or 55 ?
(a) 145
(b) 146
(c) 147
(d) 148
19. Let x and y be nonnegative real numbers such that $2^{x+2 y}=8 \sqrt{2}$. What is the maximum possible value of $x y$?
(a) $8 \sqrt{2}$
(b) $49 / 4$
(c) $49 / 32$
(d) 1
20. In how many ways can ten people be divided into two groups?
(a) 45
(b) 511
(c) 637
(d) 1022
21. Let P be the point inside the square $A B C D$ such that $\triangle P C D$ is equilateral. If $A P=1 \mathrm{~cm}$, what is the area of the square?
(a) $3+\sqrt{3} \mathrm{~cm}^{2}$
(b) $2+\sqrt{3} \mathrm{~cm}^{2}$
(c) $\frac{9}{4} \mathrm{~cm}^{2}$
(d) $2 \mathrm{~cm}^{2}$
22. Let x and y be real numbers such that $2^{2 x}+2^{x-y}-2^{x+y}=1$. Which of the following equations is always true?
(a) $x+y=0$
(b) $x=2 y$
(c) $x+2 y=0$
(d) $x=y$
23. In $\triangle A B C, M$ is the midpoint of $B C$, and N is the point on the bisector of $\angle B A C$ such that $A N \perp N B$. If $A B=14$ and $A C=19$, find $M N$.
(a) 1
(b) 1.5
(c) 2
(d) 2.5
24. Seven distinct integers are randomly chosen from the set $\{1,2, \ldots, 2009\}$. What is the probability that two of these integers have a difference that is a multiple of 6 ?
(a) $\frac{7}{2009}$
(b) $\frac{2}{7}$
(c) $\frac{1}{2}$
(d) 1
25. A student on vacation for d days observed that (1) it rained seven times, either in the morning or in the afternoon, (2) there were five clear afternoons, and (3) there were six clear mornings. Determine d.
(a) 7
(b) 8
(c) 9
(d) 10

Part III. Each correct answer is worth six points.
26. How many sequences containing two or more consecutive positive integers have a sum of 2009 ?
(a) 3
(b) 4
(c) 5
(d) 6
27. In $\triangle A B C$, let D, E, and F be points on the sides $B C, A C$, and $A B$, respectively, such that $B C=4 C D, A C=5 A E$, and $A B=6 B F$. If the area of $\triangle A B C$ is $120 \mathrm{~cm}^{2}$, what is the area of $\triangle D E F ?$
(a) $60 \mathrm{~cm}^{2}$
(b) $61 \mathrm{~cm}^{2}$
(c) $62 \mathrm{~cm}^{2}$
(d) $63 \mathrm{~cm}^{2}$
28. A function f is defined on the set of positive integers by $f(1)=1$, $f(3)=3, f(2 n)=n, f(4 n+1)=2 f(2 n+1)-f(n)$, and $f(4 n+3)=$ $3 f(2 n+1)-2 f(n)$ for all positive integers n. Determine

$$
\sum_{n=1}^{10}[f(4 n+1)+f(2 n+1)-f(4 n+3)]
$$

(a) 55
(b) 50
(c) 45
(d) 40
29. A sequence of consecutive positive integers beginning with 1 is written on the blackboard. A student came along and erased one number. The average of the remaining numbers is $35 \frac{7}{17}$. What number was erased?
(a) 7
(b) 8
(c) 9
(d) 10
30. Let M be the midpoint of the side $B C$ of $\triangle A B C$. Suppose that $A B=4$ and $A M=1$. Determine the smallest possible measure of $\angle B A C$.
(a) 60°
(b) 90°
(c) 120°
(d) 150°

Answers

1. a	6. d	11. b	16. c	21. b	26. c
2. d	7. a	12. c	17. b	22. d	27. b
3. a	8. a	13. d	18. c	23. d	28. d
4. d	9. c	14. c	19. c	24. d	29. a
5. d	10. c	15. b	20. b	25. c	30. d

