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1. The operations below can be applied on any expression of the form ax2 + bx+ c.

(I) If c 6= 0, replace a by 4a− 3

c
and c by

c

4
.

(II) If a 6= 0, replace a by −a
2

and c by −2c+
3

a
.

(IIIt) Replace x by x− t, where t is an integer. (Different values of t can be used.)

Is it possible to transform x2 − x − 6 into each of the following by applying some
sequence of the above operations?

(a) 5x2 + 5x− 1 (b) x2 + 6x+ 2

Solution: Each operation changes the discriminant D of ax2 + bx+ c into

(I) D′ = b2 − 4
(
4a− 3

c

) (
c
4

)
= b2 − 4ac+ 3 = D + 3

(II) D′ = b2 − 4
(
−a

2

) (
−2c+ 3

a

)
= b2 − 4ac+ 6 = D + 6

(IIIt) D
′ = (b− 2at)2 − 4a(at2 − bt+ c) = b2 − 4ac = D Note: b→ b− 2at

We point out that it suffices to refer to a single application of (III) instead of suc-
cessive applications since for instance, applying (IIIt1) and then (IIIt2) is equivalent
to applying (IIIt1+t2). Furthermore, applying (III) retains the quadratic coefficient.
It also doesn’t change the parity of the linear coefficient if a and b are integers since
(IIIt) changes this coefficient from b to b− 2at.

Suppose we apply on p(x) = x2 − x− 6, in some order, (I) m times and (II) n times,
possibly along with (III). The discriminant of p is 25 while that of q(x) = 5x2 +5x−1
is 45. Therefore, 25 + 3m+ 6n = 45, so 3m+ 6n = 20. This has no integer solutions
for (m,n) since 20 is not divisible by 3. Thus, it is not possible to transform p into q.

Next, suppose it is possible to transform p into r. Since r(x) = x2 + 6x + 2 has
discriminant 28, we have 25 + 3m + 6n = 28. Then m + 2n = 1, so (m,n) = (1, 0).
This means (I) is applied once and (II) never.



• Suppose (I) is applied first on p, changing its quadratic coefficient to 9
2
. Applying

(III) retains this, but the quadratic coefficient of r is 1.

• Suppose (III) is applied first, changing the coefficients (1,−1,−6) of p into
(1, n, c0), n odd, c0 ∈ Z. Applying (I) next transforms the first two coefficients to(

4− 3
c0
, n
)

. Applying (III) will not change the quadratic coefficient, so we may

suppose 4 − 3
c0

= 1, i.e. c0 = 1. Since n is odd, while the linear coefficient of r

is 6, we cannot stop yet. However, the only operation we can apply now is (III),
which will not change the parity (odd) of the linear coefficient.

Thus, it is not possible to change p into r.

2. Prove that the arithmetic sequence 5, 11, 17, 23, 29, . . . contains infinitely many primes.

Solution: The terms of the sequence are all of the form 6n + 5. By contradiction,
suppose there is a largest prime p in the sequence. Let q = (2 · 3 · 5 · · · p)− 1, one less
than the product of all primes not exceeding p. This is a number of the form 6n+ 5,
and so should be in the sequence.

If q is a prime, since q > p, we have a contradiction (p is the largest prime in the
sequence).

Suppose q is composite. None of the primes up to p is a divisor of q. Thus, all the
prime factors of q are greater than p. These primes, being greater than p, are not
in the sequence, and so should each be of the form 6n + 1. But then their product
should also be of the form 6n+ 1. Contradiction, since q is of the form 6n+ 5.

3. Let n be any positive integer. Prove that

n∑
i=1

1

(i2 + i)3/4
> 2− 2√

n+ 1
.

Solution: By the AM-GM Inequality, we have for each i,

(i+ 1)
√
i+ i
√
i+ 1

2
>
√

(i+ 1)3/2 · i3/2 = (i2 + i)3/4.

Note that this inequality is strict, as (i+ 1)
√
i cannot be equal to i

√
i+ 1. Thus,

n∑
i=1

1

(i2 + i)3/4
>

n∑
i=1

2

(i+ 1)
√
i+ i
√
i+ 1

= 2
n∑

i=1

1√
i(i+ 1)

(√
i+ 1 +

√
i
)

= 2
n∑

i=1

√
i+ 1−

√
i√

i(i+ 1)
= 2

n∑
i=1

(
1√
i
− 1√

i+ 1

)
= 2

(
1− 1√

n+ 1

)
.



4. Two players, A (first player) and B, take alternate turns in playing a game using 2016
chips as follows: the player whose turn it is, must remove s chips from the remaining
pile of chips, where s ∈ {2, 4, 5}. No one can skip a turn. The player who at some
point is unable to make a move (cannot remove chips from the pile) loses the game.
Who among the two players can force a win on this game?

Solution: We call the remaining number of chips a winning position if there exists at
least one move such that the player (whose turn it is) can force a win. The remaining
number of chips is a losing position if any move by the player will give the opponent a
chance to force a win, or a winning position. Thus, the number of chips is a winning
position if there is a move that will give the opponent a losing position.

• Clearly, 0 and 1 are losing positions: you cannot make any legal move here.

• However, 2, 4 and 5 are winning positions: take all the remaining chips and win.

• 3 is a winning position: the only move you can make is to remove 2 chips, leaving
your opponent with 1 chip, so he loses.

• 6 = 5 + 1 is also a winning position: take 5 chips, causing your opponent to lose.

• 7 and 8 are losing positions: any move will give the opponent a winning position:
7 = 2 + 5 = 4 + 3 = 5 + 2 and 8 = 2 + 6 = 4 + 4 = 5 + 3.

• Positions 9 to 13 are winning positions since you can bring the game to a losing
position: 9 = 2 + 7, 10 = 2 + 8, 11 = 4 + 7, 12 = 5 + 7, 13 = 5 + 8.

We conjecture that for nonnegative integers k, 7k and 7k+ 1 are losing positions and
7k + 2, 7k + 3, 7k + 4, 7k + 5 and 7k + 6 are winning positions. We have shown this
to be true when k = 0 and when k = 1. Now we proceed by mathematical induction.
We assume that 7k and 7k + 1 are losing positions and 7k + 2, 7k + 3, 7k + 4, 7k + 5
and 7k + 6 are winning positions, where k ≥ 0. We want to show that 7k + 7 and
7k+ 8 are losing positions while 7k+ 9, 7k+ 10, 7k+ 11, 7k+ 12, 7k+ 13 are winning
positions.

• 7k+7 and 7k+8 are losing positions since any move will yield a winning position:
7k + 7 = 2 + (7k + 5) = 4 + (7k + 3) = 5 + (7k + 2) and 7k + 8 = 2 + (7k + 6) =
4 + (7k + 4) = 5 + (7k + 3).

• 7k + 9 is a winning position: 7k + 9 = 2 + (7k + 7).

• 7k + 10 is a winning position: 7k + 10 = 2 + (7k + 8).

• 7k + 11 is a winning position: 7k + 11 = 4 + (7k + 7).

• 7k + 12 is a winning position: 7k + 12 = 4 + (7k + 8).

• 7k + 13 is a winning position: 7k + 13 = 5 + (7k + 8).

Since 2016 = 7(288) + 0, 2016 is a losing position. Thus, the second player can force
a win under this game.



5. Pentagon ABCDE is inscribed in a circle. Its diagonals AC and BD intersect at F .
The bisectors of ∠BAC and ∠CDB intersect at G. Let AG intersect BD at H, let
DG intersect AC at I, and let EG intersect AD at J . If FHGI is cyclic and

JA · FC ·GH = JD · FB ·GI,

prove that G, F and E are collinear.

Solution: Since ∠BAC and ∠BDC subtend the same arc, we can let α = ∠BAG =
∠GAC = ∠CDG = ∠GDB. Since ∠BAG = ∠BDG, then G is a point on the
circumcircle.

Let x = ∠FHI and y = ∠FIH. Since AHID is cyclic (∠HAI = ∠IDH = α), then
∠IAD = x and ∠HDA = y. Since ABCD is cyclic, we also have ∠FBC = x and
∠FCB = y.

Since FHGI is cyclic, then ∠FGI = x and ∠FGH = y. By adding the angles of
4AGD, we get as a result: x+ y + α = 90◦.

Extend GF , intersecting AD at J1, and the circumcircle of the pentagon at E1. One
consequence we get is that GJ1 ⊥ AD (because the highlighted angles of 4AJ1G,
α + x+ y, already add up to 90◦). Similarly, DH ⊥ AG and AI ⊥ DG.

The equation now implies

JA

JD
=
FB

FC
· GI
GH

=
FH

FI
· GI
GH

=
FH/GH

FI/GI
=
FJ1/J1D

FJ1/JA
=
J1A

J1D
.

This forces J = J1 and so E = E1. Therefore, G, F and E are collinear.


