18th Philippine Mathematical Olympiad

National Stage, Written Phase 23 January 2016

Time: 4.5 hours

Each item is worth 8 points.

- 1. The operations below can be applied on any expression of the form $ax^2 + bx + c$.
 - (I) If $c \neq 0$, replace a by $4a \frac{3}{c}$ and c by $\frac{c}{4}$.
 - (II) If $a \neq 0$, replace a by $-\frac{a}{2}$ and c by $-2c + \frac{3}{a}$.
 - (III_t) Replace x by x t, where t is an integer. (Different values of t can be used.)

Is it possible to transform $x^2 - x - 6$ into each of the following by applying some sequence of the above operations?

(a)
$$5x^2 + 5x - 1$$

(b)
$$x^2 + 6x + 2$$

- 2. Prove that the arithmetic sequence 5, 11, 17, 23, 29, ... contains infinitely many primes.
- **3.** Let n be any positive integer. Prove that

$$\sum_{i=1}^{n} \frac{1}{(i^2 + i)^{3/4}} > 2 - \frac{2}{\sqrt{n+1}}.$$

- 4. Two players, A (first player) and B, take alternate turns in playing a game using 2016 chips as follows: the player whose turn it is, must remove s chips from the remaining pile of chips, where $s \in \{2,4,5\}$. No one can skip a turn. The player who at some point is unable to make a move (cannot remove chips from the pile) loses the game. Who among the two players can force a win on this game?
- **5.** Pentagon ABCDE is inscribed in a circle. Its diagonals AC and BD intersect at F. The bisectors of $\angle BAC$ and $\angle CDB$ intersect at G. Let AG intersect BD at H, let DG intersect AC at I, and let EG intersect AD at J. If FHGI is cyclic and

$$JA \cdot FC \cdot GH = JD \cdot FB \cdot GI$$
.

prove that G, F and E are collinear.