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1. A T-tetromino is formed by adjoining three unit squares to form a 1× 3
rectangle, and adjoining on top of the middle square a fourth unit square.
Determine the minimum number of unit squares that must be removed
from a 202× 202 grid so that it can be tiled with T-tetrominoes.

2. Determine all positive integers k for which there exist positive integers r

and s that satisfy the equation

(k2 − 6k + 11)r−1 = (2k − 7)s.

3. Define the sequence {ai} by a0 = 1, a1 = 4, and an+1 = 5an− an−1 for all
n ≥ 1. Show that all terms of the sequence are of the form c2 + 3d2 for
some integers c and d.

4. Let ABC be an acute triangle with circumcircle Γ and D the foot of the
altitude from A. Suppose that AD = BC. Point M is the midpoint of
DC, and the bisector of ∠ADC meets AC at N . Point P lies on Γ such
that lines BP and AC are parallel. Lines DN and AM meet at F , and
line PF meets Γ again at Q. Line AC meets the circumcircle of 4PNQ
again at E. Prove that ∠DQE = 90◦.
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1. A T-tetromino is formed by adjoining three unit squares to form a 1× 3 rectangle, and
adjoining on top of the middle square a fourth unit square. Determine the minimum
number of unit squares that must be removed from a 202 × 202 grid so that it can be
tiled with T-tetrominoes.

Solution. We provide the following construction, which shows that the answer is at most
four. Clearly, four T-tetrominoes tile a 4× 4 grid, as follows:

These can be used to tile the upper-left 200 × 200 grid. It can be verified that the
following pattern fills the remaining space, leaving four grid squares uncovered:

As the answer must be a multiple of four, it remains to prove that the answer is not
zero, that is, it is impossible to tile a 202× 202 grid with T-tetrominoes.



Number the rows of the grid, from left to right, with 0, 1, . . . , 201. Similarly, number the
columns of the grid, from top to bottom, with 0, 1, . . . , 201.

Assign the square numbered (x, y) with the weight 4x+ 4y + 1. It can be verified that a
T-tetromino, no matter how it is placed, covers a sum of weights divisible by 8. However,
the sum of all the weights is not divisible by 8, as desired. �

Solution 2: An alternative way to prove that the 202 × 202 grid cannot be tiled with
T-tetrominoes is with a checkerboard coloring.

For the sake of contradiction, assume that the board can be tiled with T-tetrominoes.
Clearly, a T-tetromino covers only either three or one black square. Let x be the number
of T-tetrominoes each covering three black squares and y be the number of T-tetrominoes
each covering only one black square. Counting the number of black and white squares
yields

3x + y = 2 · 1012, x + 3y = 2 · 1012 =⇒ x = y =
1012

2
.

which contradicts the fact that x and y are integers. �



2. Determine all positive integers k for which there exist positive integers r and s that
satisfy the equation

(k2 − 6k + 11)r−1 = (2k − 7)s

Solution: Clearly, if r = 1, then 2k − 7 = 1 or 2k − 7 = −1. Thus, two solutions are
k = 4 and k = 3. Furthermore, notice that if k = 2, then 3r−1 = (−3)s, which has a
solution for r and s. Thus, another solution is k = 2.

For r ≥ 2, notice that k2− 6k+ 11 = (k− 3)2 + 2 ≥ 2 and k2− 6k+ 11 > 2k− 7 because
(k− 4)2 > −2. Moreover, k2 − 6k + 11 and (2k− 7) have the same prime factors. Let p
be a prime factor of k2 − 6k + 11 and 2k − 7, then

p | [(k2 − 6k + 11) + (2k − 7)] = (k − 2)2, which implies that p | (k − 2)

Moreover, p | [2(k − 2)− (2k − 7)] = 3. Hence, p = 3. This means that there are positive
integers m and n with m ≥ n such that k2− 6k + 11 = 3m and 2k− 7 = 3n. Notice that

4 · 3m = 4(k − 3)2 + 8 = (2k − 6)2 + 8 = (3n + 1)2 + 8 = 32n + 2 · 3n + 9.

Since 3n | (32n + 2 · 3n + 9), then 3n|9 and n ≤ 2. Hence, we only have two cases left.

• If n = 1, then 2k − 7 = 3 and k = 5 and 3m = 6, which is not possible.

• If n = 2, then 2k − 7 = 9 and k = 8 and 3m = 27, which means m = 3.

Thus, k = 8 is another solution. Therefore, k = 2, 3, 4, and 8 are the solutions. �



3. Define the sequence {ai} by a0 = 1, a1 = 4, and an+1 = 5an − an−1 for all n ≥ 1. Show
that all terms of the sequence are of the form c2 + 3d2 for some integers c and d.

Solution: The first few terms are 1 = 12 + 3(0)2, 4 = 12 + 3(1)2, 19 = 42 + 3(1)2, 91 =
42+3(1+4)2, 436 = 192+3(1+4)2, 2089 = 192+3(1+4+19)2, 9573 = 912+3(1+4+19)2.

We claim that for all n ≥ 1, a2n = a2n + 3(a0 + a1 + · · ·+ an−1)
2 and a2n+1 = a2n + 3(a0 +

a1 + · · · + an)2. Defining bn = a0 + · · · + an, we restate these as a2n = a2n + 3b2n−1 and
a2n+1 = a2n + 3b2n.

Note that for all n ∈ N, bn = bn−1 + an.

We have verified these for small values. Suppose k ≥ 1 and a2k = a2k + 3b2k−1 and
a2k+1 = a2k + 3b2k.

We first prove by induction that an − an−1 = 3bn−1 for all n ≥ 1. This is true for n = 1.
Suppose it is true for n = k. Then,

ak+1 − ak = 5ak − ak−1 − ak = 3ak + (ak − ak−1) = 3ak + 3bk−1 = 3bk.

Thus, it is indeed true for all n.

Then,

a2k+2 = 5a2k+1 − a2k

= 5a2k + 15b2k − a2k − 3b2k−1 = 4a2k + 12b2k − 3b2k−1 + 3b2k
= 4a2k + 12(ak + bk−1)

2 − 3b2k−1 + 3b2k
= (4ak − 3bk−1)

2 + 3b2k
= (ak + 3bk−1)

2 + 3b2k = a2k+1 + 3b2k

Therefore,

a2k+3 = 5a2k+2 − a2k+1

= 5a2k+1 + 15b2k − a2k − 3b2k
= 5a2k+1 + 9b2k − a2k + 3b2k
= 2a2k+1 + 9b2k − a2k − 6ak+1bk + 3a2k+1 + 6ak+1bk + 3b2k
= 2a2k+1 + 9b2k − a2k − 6ak+1bk + 3(ak+1 + bk)2

= a2k+1 + a2k+1 − 6ak+1bk + 9b2k − a2k + 3b2k+1

= a2k+1 + (ak+1 − 3bk)2 − a2k + 3b2k+1

= a2k+1 + a2k − a2k + 3b2k+1 = a2k+1 + 3b2k+1

This completes our proof. �



4. In acute triangle ABC with ∠BAC > ∠BCA, let P be the point on side BC such that
∠PAB = ∠BCA. The circumcircle of triangle APB meets side AC again at Q. Point
D lies on segment AP such that ∠QDC = ∠CAP . Point E lies on line BD such that
CE = CD. The circumcircle of triangle CQE meets segment CD again at F , and line
QF meets side BC at G. Show that B,D, F, and G are concyclic.

Solution. Refer to the figure shown below.

Since ABPQ is cyclic, we have CP ·CB = CQ ·AC. Also, we have 4CAD ∼ 4CDQ,
so CD2 = CQ · AC. This means that CE2 = CD2 = CQ · AC = CP · CB, so
4CDP ∼ 4CBD and 4CEQ ∼ 4CAE. Thus, ∠CBD = ∠CDP and, since QECF
is cyclic, ∠CAE = ∠CEQ = ∠QFD. Now, we see that

∠EDC = ∠CBD + ∠DCB = ∠CBD + ∠ACB − ∠ACD

= ∠CBD + ∠ACB − (∠CDP − ∠DAC)

= ∠BAP + ∠DAC = ∠BAC

and since triangle DCE is isosceles with CD = CE, we get ∠DEC = ∠BAC. It
follows that BAEC is cyclic, so ∠GBD = ∠CBD = ∠CAE. But ∠CAE = ∠QFD, so
∠GBD = ∠QFD and therefore, BDFG is cyclic. The desired conclusion follows. �


