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EASY 20 seconds, 2 points

1. Find the sum of the squares of the real roots of the equation 2x4 − 3x3 + 7x2 − 9x+ 3 = 0.

Answer:
5

4
Solution: By synthetic division by (x− 1), we get

2x4 − 3x3 + 7x2 − 9x+ 3 = (x− 1)(2x3 − x2 + 6x− 3)

= (x− 1)(2x− 1)(x2 + 3).

Hence, the only real roots of 2x4 − 3x3 + 7x2 − 9x+ 3 = 0 are 1 and 1
2 . and the sum is 1 + 1

4 = 5
4 .

2. What is the remainder when 32020 is divided by 73?

Answer: 8

Solution: By Fermat’s Little Theorem, 32016 = (372)28 ≡ 1(mod 73). Therefore, 32020 ≡ 34 ≡
8(mod 73).

3. What is the largest integer k such that k + 1 divides

k2020 + 2k2019 + 3k2018 + · · ·+ 2020k + 2021 ?

Answer: 1010

Solution: The remainder when the polynomial x2020 + 2x2019 + 3x2018 + · · ·+ 2020x+ 2021 is divided
by x+ 1 is

(−1)2020 + 2(−1)2019 + 3(−1)2018 + · · ·+ 2020(−1) + 2021 = 1010(−1) + 2021 = 1011.

Therefore, k+ 1 divides k2020 + 2k2019 + 3k2018 + · · ·+ 2020k+ 2021 precisely when k+ 1 divides 1011.
The largest k for which this is true is 1010.

4. A right triangle has legs of lengths 3 and 4. Find the volume of the solid formed by revolving the
triangle about its hypotenuse.

Answer:
48π

5
(cubic units)

Solution: The solid consists of two conical solids with a common circular base of radius
3 · 4

5
=

12

5
. If

h1 and h2 are the heights of the two cones, then h1 + h2 = 5. Hence, the volume of the solid is

π

3
·
(

12

5

)2

· (h1 + h2) =
48π

5
.

5. Suppose f is a second-degree polynomial for which f(2) = 1, f(4) = 2, and f(8) = 3. Find the sum of
the roots of f .

Answer: 18

Solution: Let f(x) = ax2 + bx+ c. By substituting x = 2, 4, 8 we get the system of linear equations

4a+ 2b+ c = 1

16a+ 4b+ c = 2

64a+ 8b+ c = 3.

Solving this system of equations gives us a = − 1
24 , b = 3

4 , c = −1
3 . By using Vieta’s identities, the sum

of roots is − b
a = 3

4 · 24 = 18.
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6. A triangle has side lengths 7, 11, 14. Find the length of its inradius.

Answer:
3
√

10

4
Solution: We use Heron’s formula. The semiperimeter of the triangle is 16. Thus, the area of the
triangle is

√
(16)(16− 7)(16− 11)(16− 2) = 12

√
10. Since the area of a triangle is the product of the

semiperimeter and the inradius, the length of the inradius is
3
√

10

4
.

7. Suppose that (1 + sec θ)(1 + csc θ) = 6. Determine the value of (1 + tan θ)(1 + cot θ).

Answer:
49

12
Solution: The equation is equivalent to 1 + sin θ + cos θ = 5 sin θ cos θ. Let A := sin θ + cos θ and
B := sin θ cos θ. Then 1 +A = 5B and A2 = 1 + 2B. As 1 +A 6= 0,

1 +A =
5(A2 − 1)

2
=⇒ 1 =

5(A− 1)

2
,

which gives A = 7
5 . Consequently, we get B = 12

25 . Hence,

(1 + tan θ)(1 + cot θ) =
A2

B
=

49

25
· 25

12
=

49

12
.

8. Determine the number of ordered quadruples (a, b, c, d) of positive integers such that abcd = 216.

Answer: 400

Solution: Since 216 = 2333, any positive divisor of 216 must be of the form 2x3y for some integers
x and y with 0 ≤ x, y ≤ 3. Thus, we set a = 2x13y1 , b = 2x23y2 , c = 2x33y3 and d = 2x43y4 , where
0 ≤ xi, yi ≤ 3 are integers for i = 1, . . . , 4. We compute

2333 = 216 = abcd = 2x1+x2+x3+x43y1+y2+y3+y4

so the number of such ordered quadruples (a, b, c, d) is the number of ordered 8-tuples (x1, x2, x3, x4, y1,
y2, y3, y4) of nonnegative integers such that x1+x2+x3+x4 = y1+y2+y3+y4 = 3. By stars-and-bars,

this number is
(
3+4−1
4−1

)2
= 202 = 400.

9. A 10× 1 rectangular pavement is to be covered by tiles which are either green or yellow, each of width
1 and of varying integer lengths from 1 to 10. Suppose you have an unlimited supply of tiles for each
color and for each of the varying lengths. How many distinct tilings of the rectangle are there, if at
least one green and one yellow tile should be used, and adjacent tiles should have different colors?

Answer: 1022

Solution: Note that the pavement is fixed and cannot be rotated, therefore a tiling is considered distinct
from the reverse tiling. Also, note that the restriction that no two consecutive tiles can be of the same
color can be addressed simply by treating consecutive tiles of the same color as one tile. Hence, the
problem is just asking for the number of possible tilings that alternate both colors. For any division of
the board into tiles, there are precisely two ways to color the tiles, as the coloring is determined solely
by the color of the first tile. Now, to count the uncolored tilings, we divide the board into 10 squares
using 9 dividers, and just count the number of subsets of the 9 dividers with at least one element.
There are exactly 29 − 1 = 511 such subsets, and thus 511 · 2 = 1022 such colorings.

10. Let P = (31 + 1)(32 + 1)(33 + 1) . . . (32020 + 1). Find the largest value of the integer n such that 2n

divides P .

Answer: 3030

Solution: If k is even, then note that 3k + 1 ≡ 2 (mod 4) and so 2‖3k + 1, i.e., 4 - 3k + 1. On the other
hand, if k is odd, note that 3k + 1 ≡ 4 (mod 8) so 4‖3k + 1, i.e., 4 | 3k + 1 but 8 - 3k + 1. Thus the
greatest value of m for which 2m divides 3k + 1 is 2 if k is odd, and 1 if k is even. Summing up over
1 ≤ k ≤ 2020 gives us 2 + 1 + · · ·+ 2 + 1 = 1010(2 + 1) = 3030.
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11. An infinite geometric series has sum 2020. If the first term, the third term, and the fourth term form
an arithmetic sequence, find the first term.

Answer: 1010(1 +
√

5)

Solution: Let a be the first term and r be the common ratio. Thus,
a

1− r
= 2020, or a = 2020(1− r).

We also have ar2 − a = ar3 − ar2. Since the sum of the geometric series is nonzero, a 6= 0, and so we
have r2−1 = r3− r2, or r3−2r2 + 1 = 0. Since the sum of the geometric series is finite, r cannot be 1,

so r3− 2r2 + 1 = (r− 1)(r2− r− 1) = 0 implies r2− r− 1 = 0. Solving this equation gives r =
1−
√

5

2

(since |r| < 1). This gives us a = 2020

(
1 +
√

5

2

)
= 1010(1 +

√
5).

12. Find the 2020th term of the following sequence:

1, 1, 3, 1, 3, 5, 1, 3, 5, 7, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, 11, . . .

Answer: 7

Solution: We have that for each n ∈ N, the (1 + 2 + · · · + n)th term is 2n − 1. The first n + 1 odd
positive integers are then listed. Observe that the largest triangular number less than or equal to 2020

is
63(64)

2
= 2016. Therefore, the 2020th term is 7.

13. How many infinite arithmetic sequences of positive integers are there which contain the numbers 3 and
39?

Answer: 12

Solution: The common difference should be a positive divisor of 39 − 3 = 36 = 22 · 32, which has
(2 + 1)(2 + 1) factors. If the common difference is 1, then any one of 1, 2, or 3 may be the first term.
If the common difference is 2, then the first term may be either 1 or 3 only. For the other 7 possible
common differences, the first term must be 3. Thus, there are 12 such arithmetic progressions in all.

14. What is the sum of all four-digit numbers that each use the digits 2, 4, 6, and 8 exactly once?

Answer: 133,320

Solution: Every digit appears in each decimal place exactly 6 times. Therefore, the sum is 6 · (2 + 4 +
6 + 8) · 1111 = 133,320.

15. One of the biggest mathematical breakthroughs in 2019 was progress on an 82-year old problem by
the renowned mathematician and Fields medalist Terence Tao.

Consider the function

f(n) =

{ n

2
if n is even

3n+ 1 if n is odd

Starting with any positive integer n, it was conjectured that recursive applications of the above function
always lead to 1.

While a general proof of this result still eludes the mathematical community, Tao was able to show
that if there are counterexamples to this conjecture, their frequency approaches 0 as n increases. What
is the surname of the German mathematician who proposed this conjecture in 1937?

Answer: Collatz
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AVERAGE 45 seconds, 3 points

1. What is the probability that a rectangle with perimeter 36 cm has area greater than 36 cm2?

Answer:

√
5

3
Solution: Let x and y be the lengths of the sides of the rectangle. We are looking for the probability
that xy > 36 given that 2x+2y = 36. Equivalently, we compute the probability that x(18−x) > 36
given 0 < x < 18.

Now, x(18 − x) > 36 ⇔ x2 − 18x + 36 < 0 ⇔ (x − 9)2 < 45 ⇔ 9 − 3
√

5 < x < 9 + 3
√

5, where

9− 3
√

5 > 0. Thus, the probability we are computing is
(9 + 3

√
5)− (9− 3

√
5)

18− 0
=

√
5

3
.

2. Let a and b be real numbers that satisfy the equations

a

b
+
b

a
=

5

2
and a− b =

3

2
.

Find all possible values of a2 + 2ab+ b2 + 2a2b+ 2ab2 + a2b2.

Answer: 0 and 81

Solution: From the 2nd equation, we have a2 +b2 = 9
4 +2ab. Using this for the 1st equation, we have

a2+b2

ab =
9
4
+2ab

ab = 5
2 . and it can be solved that ab = 9

2 . Moreover, from the 2nd equation, we have
(a+b)2 = 9

4+4ab = 81
4 . Thus, a+b = 9

2 or −9
2 and a2+2ab+b2+2a2b+2ab2+a2b2 = (ab+a+b)2 = 81

or 0.

3. How many permutations of the string “000011112222” contain the substring “2020”?

Answer: 3575

Solution: Removing the string “2020”, there are two 0’s, four 1’s, and two 2’s remaining. There are
8!

2!4!2! = 420 ways to arrange these digits, multiplied to 9 possible placements for the string ”2020”,
for a product of 3780.

However, by PIE, we still need to subtract the number of arrangements with string “202020” and add
back the number of arrangements with string “20202020”, each of which account for 7 · 6!

1!4!1! = 210

and 5 · 4!
0!4!0! = 5 arrangements, respectively. This gives us a total of 3780− 210 + 5 = 3575 possible

permutations.

4. Kyle secretly selects a subset of {1, 2, 3, 4}. Albert also secretly selects a subset of {1, 2, 3, 4}. What
is the probability that their chosen subsets have at least one element in common?

Answer:
175

256
Solution: Let A and B be the subsets selected by Kyle and Albert, respectively. We first find the
probability that two subsets A and B are disjoint. For each k ∈ {0, 1, . . . , 4}, we choose an arbitrary
subset A with k elements. In order for A and B to be disjoint, B must be a subset of the complement
{1, 2, 3, 4} \ A with 4 − k elements. Thus, for each k ∈ {0, 1, . . . , 4}, there are

(
4
k

)
subsets with k

elements and fixing one of such subsets (say A), there are 24−k choices for B (note that 24−k is the
number of subsets of {1, 2, 3, 4} \ A). We see that the number of ordered pairs (A,B) of subsets
with A ∩B = ∅ is

4∑
k=0

(
4

k

)
24−k = 16

4∑
k=0

(
4

k

)(
1

2

)k

= 16

(
1 +

1

2

)4

= 81.

As there are 24 = 16 subsets of {1, 2, 3, 4}, there are 162 = 256 possible ordered pairs of subsets.
Hence, the probability that two subsets A and B are disjoint is 81

256 and the probability that A and
B have at least one element in common is 1− 81

256 = 175
256 .
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5. A 20× 19 rectangle is plotted on the Cartesian plane with one corner at the origin and with sides
parallel to the coordinate axes. How many unit squares do the two diagonals of this rectangle pass
through?

Answer: 74

Solution: Suppose that one corner of the rectangle is on (20, 19). First of all, note that 20 and 19
are relatively prime. This means that the line does not intersect any vertex of a unit square in the
interior of the grid.

Now, consider the diagonal from (0,0) to (20,19). This diagonal intersects exactly 19 vertical
segments and 18 horizontal segments. Here, each intersection point represents an entry point into a
new unit square. Including the original unit square (which has the origin as a corner), this accounts
for a total of 19 + 18 + 1 = 38 unit squares.

Similarly, the other diagonal of the rectangle passes through 38 unit squares. Finally, since the
diagonals intersect at the center, the center must have been an entry point for one diagonal and an
exit point for the other, and vice versa. These pertain to the two unit squares that both diagonals
pass through.

Therefore, the diagonals pass through a total of 2(38)− 2 = 74 unit squares.

6. In 4ABC, AB = 20, BC = 21, and CA = 29. Point M is on side AB with
AM

MB
=

3

2
, while point

N is on side BC with
CN

NB
= 2. P and Q are points on side AC such that the line MP is parallel

to BC and the line NQ is parallel to AB. Suppose that MP and NQ intersect at point R. Find
the area of 4PQR.

Answer:
224

15
Solution: We use similar triangles here. Note that triangles ABC, AMP , QNC and QRP are all
similar right (by the Pythagorean theorem, since 202 + 212 = 292) triangles by AA similarity and
corresponding angle theorem. We see that AP = 3

5 · 29 = 87
5 and CQ = 2

3 · 29 = 58
3 .

Hence, PQ = AP +QC −AC = 87
5 + 58

3 − 29 = 116
15 = 29( 4

15). Thus, the ratio of similitude between
QRP and ABC is 4

15 , and the area of triangle QRP is ( 16
225)(12)(20)(21) = 224

15 .

7. In a race with six runners, A finished between B and C, B finished between C and D, and D
finished between E and F . If each sequence of winners in the race is equally likely to occur, what
is the probability that F placed last?

Answer:
5

16
Solution: Suppose A > B means that A finished earlier than B. Then, the criteria imply the
following:

(a) either B > A > C or C > A > B

(b) either E > D > F or F > D > E

(c) either D > B > C or C > B > D

Combining Criteria 1 and 2 together implies either D > B > A > C or D < B < A < C. When
D > B > A > C, there’s one place before D, and four after D (between the letters). Furthermore,
there are two ways to permute E and F . Thus, there are (1)(4)(2) = 8 possible sequences, among
which only 1 has F being last. On the other hand, when C > A > B > D, there are again 8
possibilities. If F is last, E still has 4 possible places before D.

Thus, the required probability is
1 + 4

8 + 8
=

5

16
.
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8. Suppose A = {1, 2, ..., 20}. Call B a visionary set of A if B ⊆ A, B contains at least one even
integer, and |B| ∈ B, where |B| is the cardinality of set B. How many visionary sets does A have?

Answer: 219 − 28 or 219 − 256

Solution: Ignoring the constraint that all visionary sets must contain at least one even integer, we
count a total of

19∑
i=0

(
19

i

)
= 219

sets. From this total, we subtract the number of sets that only contain odd numbers. Evidently,
|B| has to be odd. Since there are only 10 odd numbers in A, |B| can only be 1, 3, 5, 7, or 9. The
total number of instances when this happens is

4∑
i=0

(
9

2i

)
=

1

2

9∑
i=0

(
9

i

)
=

1

2
(29) = 28

sets. Therefore, there are a total of 219 − 28 visionary sets.

9. Given triangle ABC, let D be a point on side AB and E be a point on side AC. Let F be the
intersection of BE and CD. If 4DBF has an area of 4, 4BFC has an area of 6, and 4FCE has
an area of 5, find the area of quadrilateral ADFE.

Answer:
105

4
or 26.25

Solution: Let the area of quadrilateral ADFE be x. By Menelaus’ Theorem,
AD

DB
· BF
FE
· EC
CA

= 1.

Since
AD

DB
=
x+ 5

10
,
BF

FE
=

6

5
, and

EC

CA
=

11

x+ 15
, we have

66(x+ 5)

50(x+ 15)
= 1, or x =

105

4
or 26.25.

10. If a3 + b3 + c3 = 3abc = 6 and a2 + b2 + c2 = 8, find the value of

ab

a+ b
+

bc

b+ c
+

ca

c+ a
.

Answer: −8

Solution: Since a, b, c are distinct and a3 + b3 + c3−3abc = (a+ b+ c)(a2 + b2 + c2−ab− bc− ca) = 0,
then a + b + c = 0. From a + b + c = 0 and a2 + b2 + c2 = 8, we have ab + bc + ca = −4 and
a2b2 + b2c2 + c2a2 = (ab+ bc+ ca)2 − 2abc(a+ b+ c) = (ab+ bc+ ca)2 = 16. Thus,

ab

a+ b
+

bc

b+ c
+

ca

c+ a
=
ab

−c
+

bc

−a
+
ca

−b
=
−(a2b2 + b2c2 + c2a2)

abc
= −16

2
= −8

DIFFICULT 90 seconds, 6 points

1. Compute the sum of all possible distinct values of m+ n if m and n are positive integers such that

lcm(m,n) + gcd(m,n) = 2(m+ n) + 11.

Answer: 32

Solution: Let d = gcd(m,n). We consider the following cases:

(a) Suppose d = 1. Then the equation becomes mn+1 = 2m+2n+11 or (m−2)(n−2) = 14. As m
and n are coprime in this case, exactly one of them is even. This implies that exactly one of the
factors m−2 and n−2 of 14 is even. Thus, we have (m−2, n−2) ∈ {(14, 1), (7, 2), (2, 7), (1, 14)}
so that (m,n) ∈ {(16, 3), (9, 4), (4, 9), (3, 16)}. The sum of all possible values of m + n is
19 + 13 = 32.
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(b) Suppose d ≥ 2. As d | lcm(m,n), we see that d divides 2(m + n) + 11. But d divides both m
and n, so d | 11. This forces d = 11. Plugging m = 11x and n = 11y into the given equation,
where gcd(x, y) = 1, we have lcm(11x, 11y) + gcd(11x, 11y) = 2(11x + 11y) + 11, which is
equivalent to

11lcm(x, y) + 11 = 2(11x+ 11y) + 11 =⇒ xy = 2(x+ y) =⇒ (x− 2)(y − 2) = 4.

Exactly one of the factors x−2 and y−2 of 4 is even. We then get (x−2, y−2) ∈ {(4, 1), (1, 4)}
and (x, y) ∈ {(6, 3), (3, 6)}, contradicting gcd(x, y) = 1.

Hence, the sum of all possible values of m+ n satisfying lcm(m,n) + gcd(m,n) = 2(m+ n) + 11 is
32.

2. In convex pentagon ABCDE, AB = BC, CD = DE, ∠ABC = 100◦, ∠CDE = 80◦, and BD2 =
100

sin 100◦
. Find the area of the pentagon.

Answer: 50

Solution: Let AB = BC = p, AC = r, CD = DE = q, CE = s, and θ = ∠ACE. Then
r = 2p cos 40◦, s = 2q cos 50◦, and

100

sin 100◦
= BD2 = p2 + q2 − 2pq cos(90◦ + θ)

= p2 + q2 + 2pq sin θ

Thus, the required area is given by

1

2
p2 sin 100◦ +

1

2
q2 sin 80◦ +

1

2
rs sin θ =

1

2
p2 sin 100◦ +

1

2
q2 sin 80◦ +

1

2
(4pq cos 40◦ sin 40◦) sin θ

=
1

2
p2 sin 100◦ +

1

2
q2 sin 100◦ + pq sin 100◦ sin θ

=
1

2
sin 100◦(p2 + q2 + 2pq sin θ)

=
1

2
sin 100◦

(
100

sin 100◦

)
= 50

3. Consider an equilateral triangle with side 700. Suppose that one move consists of changing the length
of any of the sides of a triangle such that the result will still be a triangle. Find the minimum number
of moves to change the given triangle to an equilateral triangle with side 2.

Answer: 14

Solution: Work backwards by starting from (2, 2, 2). The fastest way to do this is to lengthen the
shortest side, making it as long as the sum of the other two sides. Denote k− to be a real number
arbitrarily close to k, but less than k.

First move: (2, 2, 4−), Second move: (2, 4−, 6−), Third move: (4−, 6−, 10−), and so on. Notice that
it follows double of the Fibonacci sequence.

2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466

The side lengths after the 11th move are (178−, 288−, 466−). After 3 moves, we can change all the
sides to 700 as follows:

Step 12: (288, 466, 700)

Step 13: (466, 700, 700)

Step 14: (700, 700, 700)

Thus, the minimum number of moves is 14.
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4. A fixed point of a function f is a value of x for which f(x) = x. Let f be the quadratic function
defined by f(x) = x2− cx+ c where c ∈ R. Find, in interval notation, the set consisting of all values
of c for which f ◦ f has four distinct fixed points.

Answer: (−∞,−1) ∪ (3,+∞)

Solution: First, observe that both x = c and x = 1 are fixed points of f , and thus fixed points of
f ◦ f . Indeed, a fixed point of f is a value of x such that f(x) − x = 0, and we have f(x) − x =
x2 − (c + 1)x + c = (x − 1)(x − c). Moreover, (f ◦ f)(x) − x is a quartic polynomial in x, and its
roots are the fixed points of f ◦ f . Thus, it follows that (f ◦ f)(x)−x = (x− 1)(x− c)g(x) for some
quadratic polynomial g. Explicitly solving gives us (f ◦f)(x)−x = (x− c)(x−1)(x2− (c−1)x+ 1).

Thus, we need only x2 − (c− 1)x+ 1 to have two distinct roots, neither of which is equal to c or 1.
This means that (c− 1)2 − 4 > 0, i.e. (c+ 1)(c− 3) > 0. Thus, we want c < −1 or c > 3. We check
now that 1 and c are not roots: we get if x = 1, x2 − (c− 1)x+ 1 = 3− c 6= 0 (since c 6= 3) and if
x = c, x2 − (c− 1)x+ 1 = c+ 1 6= 0 since c 6= −1.

Thus, all c ∈ (−∞,−1) ∪ (3,+∞) work.

5. For a positive integer n, denote by ϕ(n) the number of positive integers k ≤ n relatively prime to
n. How many positive integers n less than or equal to 100 are divisible by ϕ(n)?

Answer: 16

Solution: We claim that any such integer n must be either equal to 1 or of the form 2a3b, where
a ≥ 1 and b ≥ 0.

First, we note that if n > 1, it must be even. This is because if n admits a prime factorization
n =

∏k
i=1 p

ri
i over distinct primes pi, then ϕ(n) =

∏k
i=1(pi − 1)pri−1

i l in particular, if an odd prime
pi divides n then pi − 1 divides ϕ(n), and consequently ϕ(n) is even.

Then, we note that at most one odd prime divides n. Suppose otherwise, i.e., 2apr11 p
r2
2 is a part of

the prime factorization of n for odd primes p1, p2. Then by the multiplicativity of ϕ, we know that
ϕ(2apr11 p

r2
2 ) = 2a−1(p1 − 1)pr1−1

1 (p2 − 1)pr2−1
2 must divide ϕ(n). Note that the largest power of 2

dividing n is 2a, but since p1 − 1 and p2 − 1 are both even, 2(a− 1)22 = 2a+1 divides ϕ(n). This is
a contradiction.

Finally, we show that the said odd prime p dividing n must in fact be equal to 3. Indeed, if n = 2apr

where a and r are positive integers, we have n
ϕ(n) = 2p

p−1 = 2 + 2
p−1 . For this to be an integer, p = 3.

Hence, we count all such integers of the form n = 2a3r by summing over all possible values of r
(because there are fewer):

If r = 0, then 0 ≤ a ≤ 6. (This is the only case in which a = 0 is allowed.)
If r = 1, then 1 ≤ a ≤ 5.
If r = 2, then 1 ≤ a ≤ 3.
If r = 3, then a = 1.

This gives us a total of 7 + 5 + 3 + 1 = 16 values of n.
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