$23^{\text {rd }}$ Philippine Mathematical Olympiad
National Stage, Written Phase (Day 1)
19 March 2021

Time: 4.5 hours
Each item is worth 7 points.

1. In convex quadrilateral $A B C D, \angle C A B=\angle B C D$. P lies on line $B C$ such that $A P=P C, Q$ lies on line $A P$ such that $A C$ and $D Q$ are parallel, R is the point of intersection of lines $A B$ and $C D$, and S is the point of intersection of lines $A C$ and $Q R$. Line $A D$ meets the circumcircle of $A Q S$ again at T. Prove that $A B$ and $Q T$ are parallel.
2. Let n be a positive integer. Show that there exists a one-to-one function $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ such that

$$
\sum_{k=1}^{n} \frac{k}{(k+\sigma(k))^{2}}<\frac{1}{2}
$$

3. Denote by \mathbb{Q}^{+}the set of positive rational numbers. A function $f: \mathbb{Q}^{+} \rightarrow$ \mathbb{Q} satisfies

- $f(p)=1$ for all primes p, and
- $f(a b)=a f(b)+b f(a)$ for all $a, b \in \mathbb{Q}^{+}$.

For which positive integers n does the equation $n f(c)=c$ have at least one solution c in \mathbb{Q}^{+}?
4. Determine the set of all polynomials $P(x)$ with real coefficients such that the set $\{P(n) \mid n \in \mathbb{Z}\}$ contains all integers, except possibly finitely many of them.
$23^{\text {rd }}$ Philippine Mathematical Olympiad
National Stage, Written Phase (Day 2)
20 March 2021

Time: 4.5 hours
Each item is worth 7 points.
5. A positive integer is called lucky if it is divisible by 7 , and the sum of its digits is also divisible by 7 . Fix a positive integer n. Show that there exists some lucky integer ℓ such that $|n-\ell| \leq 70$.
6. A certain country wishes to interconnect 2021 cities with flight routes, which are always two-way, in the following manner:

- There is a way to travel between any two cities either via a direct flight or via a sequence of connecting flights.
- For every pair (A, B) of cities that are connected by a direct flight, there is another city C such that (A, C) and (B, C) are connected by direct flights.

Show that at least 3030 flight routes are needed to satisfy the two requirements.
7. Let a, b, c, and d be real numbers such that $a \geq b \geq c \geq d$ and

$$
\begin{aligned}
a+b+c+d & =13 \\
a^{2}+b^{2}+c^{2}+d^{2} & =43 .
\end{aligned}
$$

Show that $a b \geq 3+c d$.
8. In right triangle $A B C, \angle A C B=90^{\circ}$ and $\tan A>\sqrt{2} . M$ is the midpoint of $A B, P$ is the foot of the altitude from C, and N is the midpoint of $C P$. Line $A B$ meets the circumcircle of $C N B$ again at $Q . R$ lies on line $B C$ such that $Q R$ and $C P$ are parallel, S lies on ray $C A$ past A such that $B R=R S$, and V lies on segment $S P$ such that $A V=V P$. Line $S P$ meets the circumcircle of $C P B$ again at T. W lies on ray $V A$ past A such that $2 A W=S T$, and O is the circumcenter of $S P M$. Prove that lines $O M$ and $B W$ are perpendicular.
$23^{\text {rd }}$ Philippine Mathematical Olympiad
National Stage, Written Phase (Solutions)
19-20 March 2021

1. In convex quadrilateral $A B C D, \angle C A B=\angle B C D$. P lies on line $B C$ such that $A P=$ $P C, Q$ lies on line $A P$ such that $A C$ and $D Q$ are parallel, R is the point of intersection of lines $A B$ and $C D$, and S is the point of intersection of lines $A C$ and $Q R$. Line $A D$ meets the circumcircle of $A Q S$ again at T. Prove that $A B$ and $Q T$ are parallel.

Solution. Refer to the figure shown below.

By angle-chasing (with directed angles), we have

$$
\angle Q A R=\angle P A B=\angle C A B-\angle C A P=\angle B C D-\angle P C A=\angle A C D=\angle Q D R .
$$

Thus quadrilateral $Q A D R$ is cyclic. Then,

$$
\angle B A D=\angle R A D=\angle R Q D=\angle Q S A=\angle Q T A=\angle Q T D,
$$

and hence $A B$ is parallel to $Q T$.
2. Let n be a positive integer. Show that there exists a one-to-one function $\sigma:\{1,2, \ldots, n\} \rightarrow$ $\{1,2, \ldots, n\}$ such that

$$
\sum_{k=1}^{n} \frac{k}{(k+\sigma(k))^{2}}<\frac{1}{2}
$$

Solution: It suffices to produce one such function. For this, consider the function $\sigma(k)=$ $n+1-k$. Then note that σ is one-to-one, since for every a and b,

$$
\sigma(a)=\sigma(b) \Rightarrow n+1-a=n+1-b \Rightarrow a=b .
$$

In this case,

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{k}{(k+\sigma(k))^{2}} & =\sum_{k=1}^{n} \frac{k}{(k+n+1-k)^{2}} \\
& =\sum_{k=1}^{n} \frac{k}{(n+1)^{2}} \\
& =\frac{1}{(n+1)^{2}} \cdot \sum_{k=1}^{n} k \\
& =\frac{1}{2} \cdot \frac{n}{n+1} \\
& <\frac{1}{2} .
\end{aligned}
$$

3. Denote by \mathbb{Q}^{+}the set of positive rational numbers. A function $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}$ satisfies

- $f(p)=1$ for all primes p, and
- $f(a b)=a f(b)+b f(a)$ for all $a, b \in \mathbb{Q}^{+}$.

For which positive integers n does the equation $n f(c)=c$ have at least one solution c in \mathbb{Q}^{+}?

Solution: We claim that either n is the product of distinct primes, or $n=1$. Define $g(x)=\frac{f(x)}{x}$. The equation we are trying to solve becomes $g(c)=\frac{1}{n}$. The definition of the function becomes $g(p)=\frac{1}{p}$ for all primes p, and

$$
\begin{equation*}
g(a b)=g(a)+g(b) . \tag{1}
\end{equation*}
$$

Substituting $a=1$ in the above yields $g(1)=0$. Letting $b=\frac{1}{a}$ in (1) and using $g(1)=0$ gives $g(a)=-g\left(\frac{1}{a}\right)$ for all a in \mathbb{Q}^{+}. An easy induction then proves that

$$
\begin{equation*}
g\left(a^{n}\right)=n g(a) \tag{2}
\end{equation*}
$$

for positive integers n and a in \mathbb{Q}^{+}. This gives

$$
\begin{equation*}
g\left(p^{e}\right)=\frac{e}{p} \tag{3}
\end{equation*}
$$

for prime p and positive integers e. These facts, combined, give us the general formula for $g\left(\frac{p}{q}\right)$ in terms of the prime factorizations of p and q :

$$
g\left(\frac{p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}}{q_{1}^{f_{1}} \cdots q_{\ell}^{f_{\ell}}}\right)=\frac{e_{1}}{p_{1}}+\cdots+\frac{e_{k}}{p_{k}}-\frac{f_{1}}{q_{1}}-\cdots-\frac{f_{\ell}}{q_{\ell}}=\frac{m}{p_{1} \cdots p_{k} q_{1} \cdots q_{\ell}},
$$

for some integer m. Observe that the denominator is a product of distinct primes. Thus, if $g(c)=\frac{1}{n}$ for some c, then either n is the product of distinct primes, or $n=1$. It remains to prove that all such n have such a solution c.
When $n=1$, taking $c=p^{p}$ for some prime p works by (3). We now prove that if $g(c)=\frac{1}{n}$ for some $c \in \mathbb{Q}^{+}$and positive integer n, then there exists $d \in \mathbb{Q}^{+}$such that $g(d)=\frac{1}{n p}$, for any prime p relatively prime to n. This finishes the problem by induction.
Let x and y be integers whose values will be determined later. Observe that, by (2), $g\left(c^{x}\right)=x g(c)$. By (3), we get $g\left(p^{y}\right)=\frac{y}{p}$. Finally, using (1) on c^{x} and p^{y} gives

$$
g\left(c^{x} p^{y}\right)=\frac{x}{n}+\frac{y}{p}=\frac{p x+n y}{n p} .
$$

It remains to choose integers x and y such that $p x+n y=1$. But by Bézout's identity, as the greatest common divisor of p and n is 1 , there do exist such integers. Taking $d=c^{x} p^{y}$ then gives $g(d)=\frac{1}{n p}$, finishing the problem.
4. Determine the set of all polynomials $P(x)$ with real coefficients such that the set $\{P(n) \mid$ $n \in \mathbb{Z}\}$ contains all integers, except possibly finitely many of them.

Solution. We claim that the only such polynomials are of the form $P(x)=\frac{1}{i}(x+j)$ for some integers $i \neq 0, j$.
Let \mathcal{R} be the set $\{P(n) \mid n \in \mathbb{Z}\}$.
Without loss of generality, we may assume that the leading coefficient of $P(x)$ is positive; otherwise we can consider $-P(x)$. If the polynomial $P(x)$ has even degree, then it must have a minimum value m. Then all integers less than m are in the set $\mathbb{Z} \backslash \mathcal{R}$, so it cannot be finite. Thus $P(x)$ must have odd degree.
Since the set $\mathbb{Z} \backslash \mathcal{R}$ is finite, there exists some M_{1} such that $x \in \mathcal{R}$ for all integers $x>M_{1}$. As $P(x)$ has odd degree and positive leading coefficient, there exists some M_{2} such that $P\left(M_{2}\right)>M_{1}, P(x) \leq P\left(M_{2}\right)$ for all $x \leq M_{2}$ and $P(x)$ is increasing on $\left[M_{2}, \infty\right)$. Let $M=\max \left\{M_{1}, M_{2}\right\}$.
Choose an integer n such that $n>M$ and $P(n+1)>P(n)+1$. Letting $s=\lfloor P(n)+1\rfloor$, we claim there is no such integer x such that $P(x)=s$. Consider the following cases:

- $x \leq M_{2}$. Then $P(x) \leq P\left(M_{2}\right) \leq P(n)<s$.
- $M_{2}<x \leq n$. Then $P(x) \leq P(n)<s$ as $P(x)$ is increasing.
- $x>n$. Then $x \geq n+1$ and $P(x) \geq P(n+1)>P(n)+1 \geq s$, as $P(x)$ is increasing.

Thus s is in the set $\mathbb{Z} \backslash \mathcal{R}$. However, $s>P(n)>P\left(M_{2}\right)>M_{1}$, contradicting the definition of M_{1}. Thus, $P(n+1) \leq P(n)+1$ for all integers $n>M$.
Let d be the degree of $P(x)$. Observe $P(n+1)-P(n)$ is a polynomial of degree $d-1$ with the same positive leading coefficient as $P(x)$. If $d-1 \geq 1$, then $P(n+1)-P(n)$ will become arbitrarily large as n increases, contradicting $P(n+1) \leq P(n)+1$ for all integers $n>M$.
Therefore, $d=1$, and $P(x)=a x+b$ for some real numbers $a \neq 0$ and b. As $\mathbb{Z} \backslash \mathcal{R}$ is finite, only finitely many pairs of integers $(t, t+1)$ are not in \mathcal{R}. Thus, there exists distinct integers n_{1} and n_{2} such that $P\left(n_{1}\right)=t$ and $P\left(n_{2}\right)=t+1$. It follows that

$$
1=P\left(n_{2}\right)-P\left(n_{1}\right)=a\left(n_{2}-n_{1}\right) \Longrightarrow a=\frac{1}{n_{2}-n_{1}}=\frac{1}{i}
$$

for some integer $i \neq 0$. Furthermore,

$$
P\left(n_{1}\right)=t=a n_{1}+b \Longrightarrow b=\frac{i t-n_{1}}{i}=\frac{j}{i}
$$

for some integer j. Hence $P(x)$ must be of the form $\frac{1}{i}(x+j)$ for integers $i \neq 0, j$. All such polynomials clearly satisfy the given conditions.
5. A positive integer is called lucky if it is divisible by 7, and the sum of its digits is also divisible by 7 . Fix a positive integer n. Show that there exists some lucky integer ℓ such that $|n-\ell| \leq 70$.

Solution. Suppose we have some lucky integer n. We will show that the gap between it and the next lucky integer is no more than 2×70.
In one iteration, we increment $n \rightarrow n+7$. Clearly the number we have is still divisible by 7 , so it will suffice for us to show that the digit-sum will be divisible by 7 after some number of iterations.

First, suppose that the last two digits of n are less than 30 . We claim that after at most 10 such iterations, the digit-sum cycles through all possible values mod 7 .
Note that if the last digit is less than 3, then the digit-sum mod 7 does not change, while if the last digit is 3 or more, then the digit-sum mod 7 decreases by 2 . This follows because $10 \equiv-3 \bmod 7$, but we do still add +1 for the carrying in the tens place. Since we assumed that the last two digits are less than 30, there will never be any carrying in the hundreds place onwards within our 10 iterations (since $d<30$ implies that $d+70<100$).

Now, note that 7 is coprime to 10 . So, our 10 iterations of +7 will have the last digit cycle through all the digits from 0 to 9 exactly once each. Thus, the cases which do not change the digit-sum mod 7 (which are $0 \rightarrow 7,1 \rightarrow 8$, and $2 \rightarrow 9$) happen exactly once each, and the other seven iterations do -2 on the digit-sum.
Because -2 is coprime to 7,7 iterations of -2 will have the digit-sum cycle through all values $\bmod 7$. So, we are guaranteed to be able to achieve a digit-sum of $0(\bmod 7)$ within our 10 iterations of +7 .

If the last two digits are 30 or more, we can make the last two digits less than 30 with at most 10 iterations of +7 (because if $30 \leq d<100$, then $100-d \leq 70$).

Thus, from a lucky integer, we can product the next lucky integer in 20 iterations or less. The gap between lucky integers is at most 140 , and so any integer is at most 70 away from a lucky integer.
6. A certain country wishes to interconnect 2021 cities with flight routes, which are always two-way, in the following manner:

- There is a way to travel between any two cities either via a direct flight or via a sequence of connecting flights.
- For every pair (A, B) of cities that are connected by a direct flight, there is another city C such that (A, C) and (B, C) are connected by direct flights.

Show that at least 3030 flight routes are needed to satisfy the two requirements.
Solution. More generally, consider the graph G with n vertices representing n cities, two of them being connected by an edge if there is a two-way flight between them. We will prove that if G is connected and every edge in G belongs to a triangle, then G must have at least $\lfloor(3 n-2) / 2\rfloor$ edges. We call such a graph a T-graph. Let a_{n} be the minimum number of edges of a T-graph with n vertices and $b_{n}=\lfloor(3 n-2) / 2\rfloor$.

- We first show that $a_{n} \leq b_{n}$ for $n \geq 3$ via an explicit construction. We clearly have $a_{3}=b_{3}=3$. If $n=2 m+1$ is odd, we form m triangles having one common vertex. This is a T-graph with $3 m$ edges, so $a_{n} \leq 3 m=b_{n}$. If $n=2 m$ is even, we form the above T-graph with $2 m-1$ vertices, choose an edge, say $X Y$, and then add a vertex Z and edges $X Z$ and $Y Z$. This results in a T-graph with n vertices and $3(m-1)+2=3 m-1$ edges, so $a_{n} \leq 3 m-1=b_{n}$.
- We next show that $a_{n} \geq b_{n}$ for $n \geq 3$, that is, any T-graph with n vertices must have at least b_{n} edges. We proceed by strong induction. The cases $n=3$ and $n=4$ can be easily verified, as shown by their respective T-graphs below.

We claim that in a T-graph G with n vertices and less than b_{n} edges, there is a vertex whose degree is 2 . Suppose otherwise; since G is connected, every vertex has degree at least 1 and since every edge in G belongs to a triangle, every vertex must have degree at least 2. If each vertex has degree at least 3 , then the sum of the degrees is at least $3 n$. But that sum is twice the number of edges, which is less than $2 b_{n}<3 n$, a contradiction. We now suppose $a_{k}=b_{k}$ for all $k<n$, we will show that $a_{n} \geq b_{n}$. Consider a T-graph G with n vertices and a_{n} edges such that $a_{n}<b_{n}$. Then by assumption and our claim above, there is a vertex v of G of degree 2 which must be in some triangle, say uvw. Suppose the edge $u w$ belongs to some other triangle. Then the graph H obtained by deleting v and edges $u v$ and $v w$ is a T-graph with $n-1$ vertices and $a_{n}-2<b_{n}-2 \leq b_{n-1}$, a contradiction. Thus, $u w$ does not lie on any triangle other than $u v w$. We now construct a smaller graph G^{\prime} as follows: we delete v and contract $u w$, that is, we collapse the edge $u w$ by combining its endpoints into a single vertex, say x. In G^{\prime}, we connect a vertex y to x if in G, y is adjacent to one of u or w. We observe that G^{\prime} is a T-graph with $n-2$ vertices and has 3 fewer edges than G (as we remove $u v, u w$ and $v w$). We see that G^{\prime} cannot have at least 4 fewer edges than G; otherwise some vertex y in G would

[^0]be adjacent to both u and w, thus forming a triangle $u y w$ in G, a contradiction. Thus, G^{\prime} has $a_{n}-3<b_{n}-3 \leq b_{n-2}$ edges, contradicting the induction hypothesis. Hence, we must have $a_{n} \geq b_{n}$.

Combining these results leads us to $a_{n}=b_{n}$, and setting $n=2021$ yields the desired answer.
7. Let a, b, c, d be real numbers such that $a \geq b \geq c \geq d$ and which satisfy the system of equations

$$
\begin{align*}
a+b+c+d & =13 \tag{4}\\
a^{2}+b^{2}+c^{2}+d^{2} & =43 \tag{5}
\end{align*}
$$

Show that $a b \geq 3+c d$.
$\underline{\text { Solution. Since }(a-d)(b-c) \geq 0 \text { and }(a-b)(c-d) \geq 0 \text {, then }}$

$$
\begin{equation*}
a b+c d \geq a c+b d \geq a d+b c \tag{6}
\end{equation*}
$$

From Equations (4) and (5), we have

$$
\begin{gathered}
(a b+c d)+(a c+b d)+(a d+b c)=\frac{1}{2}\left[(a+b+c+d)^{2}-\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\right]= \\
\frac{1}{2}\left(13^{2}-43\right)=63
\end{gathered}
$$

Thus, using Equation (6), we have $a b+c d \geq \frac{63}{3}=21$. Since $c+d=13-(a+b)$, then

$$
\begin{aligned}
(a+b)^{2}+[13-(a+b)]^{2} & =(a+b)^{2}+(c+d)^{2} \\
& =\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+2(a b+c d) \\
& \geq 43+2(21)=85
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
(a+b)^{2}+169-26(a+b)+(a+b)^{2} & \geq 85 \\
(a+b)^{2}-13(a+b)+42 & \geq 0 \\
(a+b-6)(a+b-7) & \geq 0
\end{aligned}
$$

which means either $a+b \leq 6$ or $a+b \geq 7$. However, since $2(a+b) \geq a+b+c+d=13$, then $a+b \geq 6.5$. Thus, $a+b \geq 7$. From this, we have

$$
\begin{aligned}
(a+b)^{2}+(c-d)^{2} & \geq 7^{2}+0^{2} \\
a^{2}+b^{2}+c^{2}+d^{2}+2 a b-2 c d & \geq 49 \\
43+2(a b-c d) & \geq 49 \\
a b-c d & \geq 3 \\
a b & \geq 3+c d
\end{aligned}
$$

(Note: This problem is a modified version of Problem A3 of the 2005 IMO Shortlist.)
8. In right triangle $A B C, \angle A C B=90^{\circ}$ and $\tan A>\sqrt{2} . M$ is the midpoint of $A B, P$ is the foot of the altitude from C, and N is the midpoint of $C P$. Line $A B$ meets the circumcircle of $C N B$ again at $Q . R$ lies on line $B C$ such that $Q R$ and $C P$ are parallel, S lies on ray $C A$ past A such that $B R=R S$, and V lies on segment $S P$ such that $A V=V P$. Line $S P$ meets the circumcircle of $C P B$ again at T. W lies on ray $V A$ past A such that $2 A W=S T$, and O is the circumcenter of $S P M$. Prove that lines $O M$ and $B W$ are perpendicular.

Solution. Refer to the figure shown below.

Since $C P$ is the C-altitude of $A B C$, triangles $A C P, A B C$ and $C B P$ are similar, so $A P=\frac{A C^{2}}{A B}$ and $B P=\frac{B C^{2}}{A B}$. As $C N Q B$ is cyclic, we have $\angle P N Q=\angle C B P=\angle A C P$ so triangles $A C P$ and $Q N P$ are similar. With N being the midpoint of $P C$, we have $\frac{A P}{P Q}=\frac{P C}{P N}=2$, which gives $P Q=\frac{1}{2} A P$ and $B Q=A P-A Q=A B-\frac{3}{2} A P$. We now claim that $S C^{2}=2 A B \cdot P M$. Indeed, since $Q R$ and $C P$ are parallel, we have $\frac{B Q}{B P}=\frac{B R}{B C}$ by Thales' Theorem. Thus,

$$
R S=B R=\frac{B C \cdot B Q}{B P}=\frac{B C\left(A B-\frac{3 A C^{2}}{2 A B}\right)}{\frac{B C^{2}}{A B}}=\frac{2 A B^{2}-3 A C^{2}}{2 B C} .
$$

Applying Pythagorean theorem on triangle $S C R$, we see that

$$
\begin{aligned}
S C^{2} & =B R^{2}-R C^{2}=B C(2 B R-B C)=B C\left(\frac{2 A B^{2}-3 A C^{2}}{B C}-B C\right) \\
& =2 B C^{2}+2 C A^{2}-3 C A^{2}-B C^{2}=B C^{2}-C A^{2}
\end{aligned}
$$

Note that $\tan A>\sqrt{2}$ implies that S is indeed on ray $C A$ past A. On the other hand, with M being the midpoint of $A B$, we compute

$$
P M=A M-A P=\frac{A B}{2}-\frac{C A^{2}}{A B}=\frac{A B^{2}-2 C A^{2}}{2 A B}=\frac{B C^{2}-C A^{2}}{2 A B}=\frac{S C^{2}}{2 A B}
$$

which proves the desired claim.
Observe that the circumcircle of $C P B$ is tangent to $S C$ at C, so the Power of the Point gives $S C^{2}=S P \cdot S T$. It follows from the above claim that

$$
S P \cdot S T=2 A B \cdot P M \Longleftrightarrow \frac{S P}{P M}=\frac{2 A B}{S T}=\frac{2 A B}{2 A W}=\frac{A B}{A W} .
$$

Since $A V=P V$, we have $\angle W A B=180^{\circ}-\angle V A P=180^{\circ}-\angle V P A=\angle M P S$, so triangles $W A B$ and MPS are similar. Thus, we see that $\angle P S M=\angle A B W$ and with $O P=O M$, we arrive at

$$
\angle A B W+\angle P M O=\angle P S M+\angle P M O=\frac{1}{2}(\angle P O M+2 \angle P M O)=\frac{1}{2} \cdot 180^{\circ}=90^{\circ} .
$$

Hence, we get $O M \perp B W$, which completes the proof.

[^0]: ${ }^{1}$ That is, for every $k<n$, any T-graph with k vertices has at least $a_{k}=b_{k}$ edges.

