
23rd Philippine Mathematical Olympiad

National Stage, Written Phase (Day 1)

19 March 2021

Time: 4.5 hours Each item is worth 7 points.

1. In convex quadrilateral ABCD, ∠CAB = ∠BCD. P lies on line BC such
that AP = PC, Q lies on line AP such that AC and DQ are parallel,
R is the point of intersection of lines AB and CD, and S is the point
of intersection of lines AC and QR. Line AD meets the circumcircle of
AQS again at T . Prove that AB and QT are parallel.

2. Let n be a positive integer. Show that there exists a one-to-one function
σ : {1, 2, . . . , n} → {1, 2, . . . , n} such that

n∑
k=1

k

(k + σ(k))2
<

1

2
.

3. Denote by Q+ the set of positive rational numbers. A function f : Q+ →
Q satisfies

� f(p) = 1 for all primes p, and

� f(ab) = af(b) + bf(a) for all a, b ∈ Q+.

For which positive integers n does the equation nf(c) = c have at least
one solution c in Q+?

4. Determine the set of all polynomials P (x) with real coefficients such that
the set {P (n) | n ∈ Z} contains all integers, except possibly finitely many
of them.



23rd Philippine Mathematical Olympiad

National Stage, Written Phase (Day 2)

20 March 2021

Time: 4.5 hours Each item is worth 7 points.

5. A positive integer is called lucky if it is divisible by 7, and the sum of
its digits is also divisible by 7. Fix a positive integer n. Show that there
exists some lucky integer ℓ such that |n− ℓ| ≤ 70.

6. A certain country wishes to interconnect 2021 cities with flight routes,
which are always two-way, in the following manner:

� There is a way to travel between any two cities either via a direct
flight or via a sequence of connecting flights.

� For every pair (A,B) of cities that are connected by a direct flight,
there is another city C such that (A,C) and (B,C) are connected by
direct flights.

Show that at least 3030 flight routes are needed to satisfy the two require-
ments.

7. Let a, b, c, and d be real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c+ d = 13

a2 + b2 + c2 + d2 = 43.

Show that ab ≥ 3 + cd.

8. In right triangle ABC, ∠ACB = 90◦ and tanA >
√
2. M is the midpoint

of AB, P is the foot of the altitude from C, and N is the midpoint of
CP . Line AB meets the circumcircle of CNB again at Q. R lies on line
BC such that QR and CP are parallel, S lies on ray CA past A such
that BR = RS, and V lies on segment SP such that AV = V P . Line
SP meets the circumcircle of CPB again at T . W lies on ray V A past
A such that 2AW = ST , and O is the circumcenter of SPM. Prove that
lines OM and BW are perpendicular.



23rd Philippine Mathematical Olympiad

National Stage, Written Phase (Solutions)

19-20 March 2021

1. In convex quadrilateral ABCD, ∠CAB = ∠BCD. P lies on line BC such that AP =
PC, Q lies on line AP such that AC and DQ are parallel, R is the point of intersection
of lines AB and CD, and S is the point of intersection of lines AC and QR. Line AD
meets the circumcircle of AQS again at T . Prove that AB and QT are parallel.

Solution. Refer to the figure shown below.

By angle-chasing (with directed angles), we have

∠QAR = ∠PAB = ∠CAB − ∠CAP = ∠BCD − ∠PCA = ∠ACD = ∠QDR.

Thus quadrilateral QADR is cyclic. Then,

∠BAD = ∠RAD = ∠RQD = ∠QSA = ∠QTA = ∠QTD,

and hence AB is parallel to QT . 2



2. Let n be a positive integer. Show that there exists a one-to-one function σ : {1, 2, . . . , n} →
{1, 2, . . . , n} such that

n∑
k=1

k

(k + σ(k))2
<

1

2
.

Solution: It suffices to produce one such function. For this, consider the function σ(k) =
n+ 1− k. Then note that σ is one-to-one, since for every a and b,

σ(a) = σ(b) ⇒ n+ 1− a = n+ 1− b ⇒ a = b.

In this case,

n∑
k=1

k

(k + σ(k))2
=

n∑
k=1

k

(k + n+ 1− k)2

=
n∑

k=1

k

(n+ 1)2

=
1

(n+ 1)2
·

n∑
k=1

k

=
1

2
· n

n+ 1

<
1

2
.

2



3. Denote by Q+ the set of positive rational numbers. A function f : Q+ → Q satisfies

� f(p) = 1 for all primes p, and

� f(ab) = af(b) + bf(a) for all a, b ∈ Q+.

For which positive integers n does the equation nf(c) = c have at least one solution c
in Q+?

Solution: We claim that either n is the product of distinct primes, or n = 1. Define
g(x) = f(x)

x
. The equation we are trying to solve becomes g(c) = 1

n
. The definition of

the function becomes g(p) = 1
p
for all primes p, and

g(ab) = g(a) + g(b). (1)

Substituting a = 1 in the above yields g(1) = 0. Letting b = 1
a
in (1) and using g(1) = 0

gives g(a) = −g( 1
a
) for all a in Q+. An easy induction then proves that

g(an) = ng(a) (2)

for positive integers n and a in Q+. This gives

g(pe) =
e

p
(3)

for prime p and positive integers e. These facts, combined, give us the general formula
for g(p

q
) in terms of the prime factorizations of p and q:

g

(
pe11 · · · pekk
qf11 · · · qfℓℓ

)
=

e1
p1

+ · · ·+ ek
pk

− f1
q1

− · · · − fℓ
qℓ

=
m

p1 · · · pkq1 · · · qℓ
,

for some integer m. Observe that the denominator is a product of distinct primes. Thus,
if g(c) = 1

n
for some c, then either n is the product of distinct primes, or n = 1. It remains

to prove that all such n have such a solution c.

When n = 1, taking c = pp for some prime p works by (3). We now prove that if g(c) = 1
n

for some c ∈ Q+ and positive integer n, then there exists d ∈ Q+ such that g(d) = 1
np
,

for any prime p relatively prime to n. This finishes the problem by induction.

Let x and y be integers whose values will be determined later. Observe that, by (2),
g(cx) = xg(c). By (3), we get g(py) = y

p
. Finally, using (1) on cx and py gives

g(cxpy) =
x

n
+

y

p
=

px+ ny

np
.

It remains to choose integers x and y such that px+ ny = 1. But by Bézout’s identity,
as the greatest common divisor of p and n is 1, there do exist such integers. Taking
d = cxpy then gives g(d) = 1

np
, finishing the problem. 2



4. Determine the set of all polynomials P (x) with real coefficients such that the set {P (n) |
n ∈ Z} contains all integers, except possibly finitely many of them.

Solution. We claim that the only such polynomials are of the form P (x) = 1
i
(x + j) for

some integers i ̸= 0, j.

Let R be the set {P (n) | n ∈ Z}.
Without loss of generality, we may assume that the leading coefficient of P (x) is positive;
otherwise we can consider −P (x). If the polynomial P (x) has even degree, then it must
have a minimum value m. Then all integers less than m are in the set Z\R, so it cannot
be finite. Thus P (x) must have odd degree.

Since the set Z\R is finite, there exists some M1 such that x ∈ R for all integers x > M1.
As P (x) has odd degree and positive leading coefficient, there exists some M2 such that
P (M2) > M1, P (x) ≤ P (M2) for all x ≤ M2 and P (x) is increasing on [M2,∞). Let
M = max{M1,M2}.
Choose an integer n such that n > M and P (n+1) > P (n)+1. Letting s = ⌊P (n)+1⌋,
we claim there is no such integer x such that P (x) = s. Consider the following cases:

� x ≤ M2. Then P (x) ≤ P (M2) ≤ P (n) < s.

� M2 < x ≤ n. Then P (x) ≤ P (n) < s as P (x) is increasing.

� x > n. Then x ≥ n+1 and P (x) ≥ P (n+1) > P (n)+1 ≥ s, as P (x) is increasing.

Thus s is in the set Z \ R. However, s > P (n) > P (M2) > M1, contradicting the
definition of M1. Thus, P (n+ 1) ≤ P (n) + 1 for all integers n > M .

Let d be the degree of P (x). Observe P (n + 1) − P (n) is a polynomial of degree d − 1
with the same positive leading coefficient as P (x). If d − 1 ≥ 1, then P (n + 1) − P (n)
will become arbitrarily large as n increases, contradicting P (n + 1) ≤ P (n) + 1 for all
integers n > M .

Therefore, d = 1, and P (x) = ax + b for some real numbers a ̸= 0 and b. As Z \ R
is finite, only finitely many pairs of integers (t, t + 1) are not in R. Thus, there exists
distinct integers n1 and n2 such that P (n1) = t and P (n2) = t+ 1. It follows that

1 = P (n2)− P (n1) = a(n2 − n1) =⇒ a =
1

n2 − n1

=
1

i

for some integer i ̸= 0. Furthermore,

P (n1) = t = an1 + b =⇒ b =
it− n1

i
=

j

i

for some integer j. Hence P (x) must be of the form 1
i
(x + j) for integers i ̸= 0, j. All

such polynomials clearly satisfy the given conditions. 2



5. A positive integer is called lucky if it is divisible by 7, and the sum of its digits is also
divisible by 7. Fix a positive integer n. Show that there exists some lucky integer ℓ such
that |n− ℓ| ≤ 70.

Solution. Suppose we have some lucky integer n. We will show that the gap between it
and the next lucky integer is no more than 2× 70.

In one iteration, we increment n → n + 7. Clearly the number we have is still divisible
by 7, so it will suffice for us to show that the digit-sum will be divisible by 7 after some
number of iterations.

First, suppose that the last two digits of n are less than 30. We claim that after at most
10 such iterations, the digit-sum cycles through all possible values mod 7.

Note that if the last digit is less than 3, then the digit-sum mod 7 does not change,
while if the last digit is 3 or more, then the digit-sum mod 7 decreases by 2. This
follows because 10 ≡ −3 mod 7, but we do still add +1 for the carrying in the tens
place. Since we assumed that the last two digits are less than 30, there will never be any
carrying in the hundreds place onwards within our 10 iterations (since d < 30 implies
that d+ 70 < 100).

Now, note that 7 is coprime to 10. So, our 10 iterations of +7 will have the last digit
cycle through all the digits from 0 to 9 exactly once each. Thus, the cases which do not
change the digit-sum mod 7 (which are 0 → 7, 1 → 8, and 2 → 9) happen exactly once
each, and the other seven iterations do −2 on the digit-sum.

Because −2 is coprime to 7, 7 iterations of −2 will have the digit-sum cycle through
all values mod 7. So, we are guaranteed to be able to achieve a digit-sum of 0 (mod 7)
within our 10 iterations of +7.

If the last two digits are 30 or more, we can make the last two digits less than 30 with
at most 10 iterations of +7 (because if 30 ≤ d < 100, then 100− d ≤ 70).

Thus, from a lucky integer, we can product the next lucky integer in 20 iterations or
less. The gap between lucky integers is at most 140, and so any integer is at most 70
away from a lucky integer. 2



6. A certain country wishes to interconnect 2021 cities with flight routes, which are always
two-way, in the following manner:

� There is a way to travel between any two cities either via a direct flight or via a
sequence of connecting flights.

� For every pair (A,B) of cities that are connected by a direct flight, there is another
city C such that (A,C) and (B,C) are connected by direct flights.

Show that at least 3030 flight routes are needed to satisfy the two requirements.

Solution. More generally, consider the graph G with n vertices representing n cities, two
of them being connected by an edge if there is a two-way flight between them. We will
prove that if G is connected and every edge in G belongs to a triangle, then G must have
at least ⌊(3n − 2)/2⌋ edges. We call such a graph a T -graph. Let an be the minimum
number of edges of a T -graph with n vertices and bn = ⌊(3n− 2)/2⌋.

� We first show that an ≤ bn for n ≥ 3 via an explicit construction. We clearly have
a3 = b3 = 3. If n = 2m+1 is odd, we form m triangles having one common vertex.
This is a T -graph with 3m edges, so an ≤ 3m = bn. If n = 2m is even, we form
the above T -graph with 2m − 1 vertices, choose an edge, say XY , and then add
a vertex Z and edges XZ and Y Z. This results in a T -graph with n vertices and
3(m− 1) + 2 = 3m− 1 edges, so an ≤ 3m− 1 = bn.

� We next show that an ≥ bn for n ≥ 3, that is, any T -graph with n vertices must
have at least bn edges. We proceed by strong induction. The cases n = 3 and n = 4
can be easily verified, as shown by their respective T -graphs below.

We claim that in a T -graph G with n vertices and less than bn edges, there is a
vertex whose degree is 2. Suppose otherwise; since G is connected, every vertex
has degree at least 1 and since every edge in G belongs to a triangle, every vertex
must have degree at least 2. If each vertex has degree at least 3, then the sum of
the degrees is at least 3n. But that sum is twice the number of edges, which is
less than 2bn < 3n, a contradiction. We now suppose ak = bk for all k < n1; we
will show that an ≥ bn. Consider a T -graph G with n vertices and an edges such
that an < bn. Then by assumption and our claim above, there is a vertex v of G of
degree 2 which must be in some triangle, say uvw. Suppose the edge uw belongs to
some other triangle. Then the graph H obtained by deleting v and edges uv and vw
is a T -graph with n− 1 vertices and an− 2 < bn− 2 ≤ bn−1, a contradiction. Thus,
uw does not lie on any triangle other than uvw. We now construct a smaller graph
G′ as follows: we delete v and contract uw, that is, we collapse the edge uw by
combining its endpoints into a single vertex, say x. In G′, we connect a vertex y to
x if in G, y is adjacent to one of u or w. We observe that G′ is a T -graph with n−2
vertices and has 3 fewer edges than G (as we remove uv, uw and vw). We see that
G′ cannot have at least 4 fewer edges than G; otherwise some vertex y in G would

1That is, for every k < n, any T -graph with k vertices has at least ak = bk edges.



be adjacent to both u and w, thus forming a triangle uyw in G, a contradiction.
Thus, G′ has an − 3 < bn − 3 ≤ bn−2 edges, contradicting the induction hypothesis.
Hence, we must have an ≥ bn.

Combining these results leads us to an = bn, and setting n = 2021 yields the desired
answer. 2



7. Let a, b, c, d be real numbers such that a ≥ b ≥ c ≥ d and which satisfy the system of
equations

a+ b+ c+ d = 13 (4)

a2 + b2 + c2 + d2 = 43 (5)

Show that ab ≥ 3 + cd.

Solution. Since (a− d)(b− c) ≥ 0 and (a− b)(c− d) ≥ 0, then

ab+ cd ≥ ac+ bd ≥ ad+ bc (6)

From Equations (4) and (5), we have

(ab+ cd) + (ac+ bd) + (ad+ bc) =
1

2
[(a+ b+ c+ d)2 − (a2 + b2 + c2 + d2)] =

1

2
(132 − 43) = 63

Thus, using Equation (6), we have ab+ cd ≥ 63

3
= 21. Since c+ d = 13− (a+ b), then

(a+ b)2 + [13− (a+ b)]2 = (a+ b)2 + (c+ d)2

= (a2 + b2 + c2 + d2) + 2(ab+ cd)

≥ 43 + 2(21) = 85

Thus, we have

(a+ b)2 + 169− 26(a+ b) + (a+ b)2 ≥ 85

(a+ b)2 − 13(a+ b) + 42 ≥ 0

(a+ b− 6)(a+ b− 7) ≥ 0

which means either a+ b ≤ 6 or a+ b ≥ 7. However, since 2(a+ b) ≥ a+ b+ c+ d = 13,
then a+ b ≥ 6.5. Thus, a+ b ≥ 7. From this, we have

(a+ b)2 + (c− d)2 ≥ 72 + 02

a2 + b2 + c2 + d2 + 2ab− 2cd ≥ 49

43 + 2(ab− cd) ≥ 49

ab− cd ≥ 3

ab ≥ 3 + cd

2

(Note: This problem is a modified version of Problem A3 of the 2005 IMO Shortlist.)



8. In right triangle ABC, ∠ACB = 90◦ and tanA >
√
2. M is the midpoint of AB, P

is the foot of the altitude from C, and N is the midpoint of CP . Line AB meets the
circumcircle of CNB again at Q. R lies on line BC such that QR and CP are parallel,
S lies on ray CA past A such that BR = RS, and V lies on segment SP such that
AV = V P . Line SP meets the circumcircle of CPB again at T . W lies on ray V A past
A such that 2AW = ST , and O is the circumcenter of SPM. Prove that lines OM and
BW are perpendicular.

Solution. Refer to the figure shown below.

Since CP is the C-altitude of ABC, triangles ACP,ABC and CBP are similar, so
AP = AC2

AB
and BP = BC2

AB
. As CNQB is cyclic, we have ∠PNQ = ∠CBP = ∠ACP

so triangles ACP and QNP are similar. With N being the midpoint of PC, we have
AP
PQ

= PC
PN

= 2, which gives PQ = 1
2
AP and BQ = AP − AQ = AB − 3

2
AP . We now

claim that SC2 = 2AB ·PM . Indeed, since QR and CP are parallel, we have BQ
BP

= BR
BC

by Thales’ Theorem. Thus,

RS = BR =
BC ·BQ

BP
=

BC(AB − 3AC2

2AB
)

BC2

AB

=
2AB2 − 3AC2

2BC
.

Applying Pythagorean theorem on triangle SCR, we see that

SC2 = BR2 −RC2 = BC(2BR−BC) = BC

(
2AB2 − 3AC2

BC
−BC

)
= 2BC2 + 2CA2 − 3CA2 −BC2 = BC2 − CA2.

Note that tanA >
√
2 implies that S is indeed on ray CA past A. On the other hand,

with M being the midpoint of AB, we compute

PM = AM − AP =
AB

2
− CA2

AB
=

AB2 − 2CA2

2AB
=

BC2 − CA2

2AB
=

SC2

2AB



which proves the desired claim.

Observe that the circumcircle of CPB is tangent to SC at C, so the Power of the Point
gives SC2 = SP · ST . It follows from the above claim that

SP · ST = 2AB · PM ⇐⇒ SP

PM
=

2AB

ST
=

2AB

2AW
=

AB

AW
.

Since AV = PV , we have ∠WAB = 180◦ − ∠V AP = 180◦ − ∠V PA = ∠MPS, so
triangles WAB and MPS are similar. Thus, we see that ∠PSM = ∠ABW and with
OP = OM , we arrive at

∠ABW + ∠PMO = ∠PSM + ∠PMO =
1

2
(∠POM + 2∠PMO) =

1

2
· 180◦ = 90◦.

Hence, we get OM ⊥ BW , which completes the proof. 2


