$24{ }^{\text {th }}$ Philippine Mathematical Olympiad
National Stage (Day 1)
18 March 2022

Each item is worth 7 points.

1. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(a-b) f(c-d)+f(a-d) f(b-c) \leq(a-c) f(b-d)
$$

for all real numbers a, b, c, and d.
2. The PMO Magician has a special party game. There are n chairs, labelled 1 to n. There are n sheets of paper, labelled 1 to n.

- On each chair, she attaches exactly one sheet whose number does not match the number on the chair.
- She then asks n party guests to sit on the chairs so that each chair has exactly one occupant.
- Whenever she claps her hands, each guest looks at the number on the sheet attached to their current chair, and moves to the chair labelled with that number.

Show that if $1<m \leq n$, where m is not a prime power, it is always possible for the PMO Magician to choose which sheet to attach to each chair so that everyone returns to their original seats after exactly m claps.
3. Call a lattice point visible if the line segment connecting the point and the origin does not pass through another lattice point. Given a positive integer k, denote by S_{k} the set of all visible lattice points (x, y) such that $x^{2}+y^{2}=k^{2}$. Let D denote the set of all positive divisors of $2021 \cdot 2025$. Compute the sum

$$
\sum_{d \in D}\left|S_{d}\right| .
$$

Here, a lattice point is a point (x, y) on the plane where both x and y are integers, and $|A|$ denotes the number of elements of the set A.
4. Let $\triangle A B C$ have incenter I and centroid G. Suppose that P_{A} is the foot of the perpendicular from C to the exterior angle bisector of B, and Q_{A} is the foot of the perpendicular from B to the exterior angle bisector of C. Define P_{B}, P_{C}, Q_{B}, and Q_{C} similarly. Show that P_{A}, P_{B}, P_{C}, Q_{A}, Q_{B}, and Q_{C} lie on a circle whose center is on line $I G$.
$24^{\text {th }}$ Philippine Mathematical Olympiad
National Stage (Day 2)
19 March 2022

Time: 4.5 hours

Each item is worth 7 points.
5. Find all positive integers n for which there exists a set of exactly n distinct positive integers, none of which exceed n^{2}, whose reciprocals add up to 1 .
6. In $\triangle A B C$, let D be the point on side $B C$ such that $A B+B D=D C+C A$. The line $A D$ intersects the circumcircle of $\triangle A B C$ again at point $X \neq A$. Prove that one of the common tangents of the circumcircles of $\triangle B D X$ and $\triangle C D X$ is parallel to $B C$.
7. Let a, b, and c be positive real numbers such that $a b+b c+c a=3$. Show that

$$
\frac{b c}{1+a^{4}}+\frac{c a}{1+b^{4}}+\frac{a b}{1+c^{4}} \geq \frac{3}{2} .
$$

8. The set $S=\{1,2, \ldots, 2022\}$ is to be partitioned into n disjoint subsets $S_{1}, S_{2}, \ldots, S_{n}$ such that for each $i \in\{1,2, \ldots, n\}$, exactly one of the following statements is true:
(a) For all $x, y \in S_{i}$ with $x \neq y, \operatorname{gcd}(x, y)>1$.
(b) For all $x, y \in S_{i}$ with $x \neq y, \operatorname{gcd}(x, y)=1$.

Find the smallest value of n for which this is possible.
$24^{\text {th }}$ Philippine Mathematical Olympiad National Stage (Solutions)
18-19 March 2022

1. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(a-b) f(c-d)+f(a-d) f(b-c) \leq(a-c) f(b-d)
$$

for all real numbers a, b, c, and d.
Solution. We claim that the only solutions are $f(x)=0$ and $f(x)=x$. It is easy to see that both satisfy the functional inequality. We now show that no other functions satisfy the given condition.
Letting $a=b=c=d$ yields $2 f(0)^{2} \leq 0$ which implies $f(0)=0$. Now, suppose that $f \not \equiv 0$. Then we can find $p \in \mathbb{R}$ such that $f(p) \neq 0$. For $a \in \mathbb{R}$, let $b=a, c=0$, and $d=a-p$. We then have

$$
f(p) f(a) \leq a f(p)
$$

Case 1: Suppose $f(p)>0$. Then $f(a) \leq a$ for all $a \in \mathbb{R}$. In particular $f(-1)<0$. In the original functional equation, letting $b=a, c=0$, and $d=a+1$ yields $f(-1) f(a) \leq$ $a f(-1)$ for all $a \in \mathbb{R}$. Hence, $f(a) \geq a$ for all $a \in \mathbb{R}$. Thus for this case, $f(x)=x$ for all $x \in \mathbb{R}$.

Case 2: Suppose $f(p)<0$. Then $f(a) \geq a$ for all $a \in \mathbb{R}$. In particular $f(1)>0$. In the original functional equation, letting $b=a, c=0$, and $d=a-1$ yields $f(1) f(a) \leq a f(1)$ for all $a \in \mathbb{R}$. Hence, $f(a) \leq a$ for all $a \in \mathbb{R}$. Thus for this case, $f(x)=x$ for all $x \in \mathbb{R}$.
2. The PMO Magician has a special party game. There are n chairs, labelled 1 to n. There are n sheets of paper, labelled 1 to n.

- On each chair, she attaches exactly one sheet whose number does not match the number on the chair.
- She then asks n party guests to sit on the chairs so that each chair has exactly one occupant.
- Whenever she claps her hands, each guest looks at the number on the sheet attached to their current chair, and moves to the chair labelled with that number.

Show that if $1<m \leq n$, where m is not a prime power, it is always possible for the PMO Magician to choose which sheet to attach to each chair so that everyone returns to their original seats after exactly m claps.

Solution. Decompose the permutation into cycles of lengths $c_{1}, c_{2}, c_{3}, \ldots, c_{k}$. Note that $c_{1}+c_{2}+\cdots+c_{k}=n$. A guest in a cycle of length c returns to their original seat after c claps. Thus, all guests return to their original seats after $\operatorname{lcm}\left\{c_{i}\right\}$ claps.

Let $m=p q$, where p and q are coprime and both greater than 1 ; if $m>1$ is not a prime power, then it has at least two different prime factors, so this is always possible. Suppose we have at least one cycle of lengths p and q, and all cycles are of lengths p or q. Then, all guests will return to their original seats after $\operatorname{lcm}\{p, q\}=m$ claps.
If $m=n$, we can just connect all n party guests in one big cycle of size $m=n$. Otherwise, $m<n$, and note that the problem is equivalent to finding a nonnegative integer solution to $p \bar{x}+q \bar{y}=n-p-q$. Since $m<n$, a solution always exists by the Chicken McNugget Theorem, completing the proof.
3. Call a lattice point visible if the line segment connecting the point and the origin does not pass through another lattice point. Given a positive integer k, denote by S_{k} the set of all visible lattice points (x, y) such that $x^{2}+y^{2}=k^{2}$. Let D denote the set of all positive divisors of $2021 \cdot 2025$. Compute the sum

$$
\sum_{d \in D}\left|S_{d}\right| .
$$

Here, a lattice point is a point (x, y) on the plane where both x and y are integers, and $|A|$ denotes the number of elements of the set A.

Solution. We claim that the required sum is 20 .
Let T_{k} denote the set of all lattice points in the circle $x^{2}+y^{2}=k^{2}$. We claim that $\sum_{d \mid k}\left|S_{d}\right|=\left|T_{k}\right|$. Indeed, given a point (x, y) in T_{k}, let $g=\operatorname{gcd}(x, y)$. Then $x / g, y / g$ are necessarily coprime, and hence $(x / g, y / g)$ visible, and $(x / g)^{2}+(y / g)^{2}=(k / g)^{2}$. This implies $(x / g, y / g) \in \bigcup_{d \mid k} S_{d}$. Next, note that the S_{d} 's are necessarily disjoint. Now if $\left(x^{\prime}, y^{\prime}\right)$ is a visible lattice point in S_{d} where $d \mid k$, then we can write $k=g d$ so that $(x, y)=\left(g x^{\prime}, g y^{\prime}\right)$ is a lattice point in T_{k}. This establishes a bijection between $\bigcup_{d \mid k} S_{d}$ and T_{k}, and since the S_{d} 's are disjoint, the claim follows.
From the claim, it suffices to find the number of lattice points in the circle $x^{2}+y^{2}=$ $(2021 \cdot 2025)^{2}$. This is equivalent to

$$
x^{2}+y^{2}=3^{8} \cdot 5^{4} \cdot 43^{2} \cdot 47^{2}
$$

Now it is well-known that if $x^{2}+y^{2} \equiv 0(\bmod p)$ where $p \equiv 3(\bmod 4)$ is a prime, then $x \equiv y \equiv 0(\bmod p)$. Thus, we must also have $x, y \equiv 0\left(\bmod 3^{4} \cdot 43 \cdot 47\right)$. It then follows that the number of lattice points is the same as the number of lattice points in $x^{2}+y^{2}=25^{2}$.
If $x=0$ or $y=0$, there are 4 solutions. Otherwise, assume WLOG that they are both positive. Now it is well-known that all solutions to $x^{2}+y^{2}=z^{2}$ are in the form $x=g\left(m^{2}-n^{2}\right), y=2 g m n$, and $z=g\left(m^{2}+n^{2}\right)$, where $m>n$ are coprime positive integers, and g is a positive integer. Thus, we want $g\left(m^{2}+n^{2}\right)=25$. Note that $g \mid 25$, so $g=1,5,25$.
If $g=25$, then $m^{2}+n^{2}=1$, so $n=0$, contradiction. If $g=5$, then $m^{2}+n^{2}=5$, which yields $m=2$ and $n=1$ and thus $g\left(m^{2}-n^{2}\right)=15$ and $2 g m n=20$, so $(x, y)=$ $(15,20),(20,15)$. If $g=1$, then we get $m^{2}+n^{2}=25$, from which we obtain $m=4$ and $n=3$. It then follows that $(x, y)=(24,7),(7,24)$, and so we have 2 solutions when x, y are both positive. This implies that there are $4 \cdot 4=16$ solutions when x, y are nonzero, and so there are $4+16=20$ solutions in total.
4. Let $\triangle A B C$ have incenter I and centroid G. Suppose that P_{A} is the foot of the perpendicular from C to the exterior angle bisector of B, and Q_{A} is the foot of the perpendicular from B to the exterior angle bisector of C. Define P_{B}, P_{C}, Q_{B}, and Q_{C} similarly. Show that $P_{A}, P_{B}, P_{C}, Q_{A}, Q_{B}$, and Q_{C} lie on a circle whose center is on line $I G$.

Solution. Refer to the figure shown below:

Let M_{A}, M_{B}, and M_{C} be the midpoints of $B C, C A$, and $A B$ respectively.
First, it may be shown that P_{B} and Q_{C} lie on $M_{B} M_{C}$.
Note that $\angle A M_{C} Q_{C}=2 \angle A B Q_{C}=180^{\circ}-\angle A B C=\angle B M_{C} M_{B}$. Thus, Q_{C} lies on $M_{B} M_{C}$. Likewise, $A M_{B} P_{B}=2 \angle A C P_{B}=180^{\circ}-\angle A C B=\angle C M_{B} M_{C}$. Thus, P_{B} also lies on $M_{B} M_{C}$.
Similarly, P_{C} and Q_{A} lie on $M_{C} M_{A}$, and P_{A} and Q_{B} lie on $M_{A} M_{B}$.
Now, as M_{A} is the center of the circle passing through B, C, Q_{A}, and P_{A}, then $M_{A} P_{A}=$ $M_{A} Q_{A}$, so the angle bisector of $\angle M_{C} M_{A} M_{B}$ coincides with the perpendicular bisector of $P_{A} Q_{A}$.
Observe that $M_{C} Q_{A}=M_{C} M_{A}+M_{A} Q_{A}=\frac{C A}{2}+\frac{B C}{2}=M_{B} P_{B}+M_{C} M_{B}=M_{C} P_{B}$. Thus, the perpendicular bisector of $Q_{A} P_{B}$ coincides with the angle bisector of $\angle M_{B} M_{C} M_{A}$.
Using similar observations, it may then be concluded that the perpendicular bisectors of $P_{A} Q_{A}, Q_{A} P_{B}, P_{B} Q_{B}, Q_{B} P_{C}, P_{C} Q_{C}$, and $Q_{C} P_{A}$ all concur at the incenter of $\triangle M_{A} M_{B} M_{C}$. Thus, the latter must also be the center of the circle containing all six points. As the medial triangle is the image of a homothety on $\triangle A B C$ with center G having a scale factor of -0.5 , then the incenter of $\triangle M_{A} M_{B} M_{C}$ must lie on $I G$.
5. Find all positive integers n for which there exists a set of exactly n distinct positive integers, none of which exceed n^{2}, whose reciprocals add up to 1 .

Solution. The answer is all $n \neq 2$. For $n=1$, the set $\{1\}$ works. For $n=2$, no set exists, simply because the sum of reciprocals of two distinct integers cannot be equal to 1 . For $n=3$, take $\{2,3,6\}$.
For $n>3$, the identity

$$
\frac{1}{k}=\frac{1}{k+r}+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}+\cdots+\frac{1}{(k+r-1)(k+r)}
$$

allows us to extend a sum of t terms to one of exactly $t+r$ terms. Taking $k=3$ and $r=n-3$ allows us to turn the sum $1=1 / 2+1 / 3+1 / 6$ to the n-term sum

$$
1=\frac{1}{2}+\frac{1}{6}+\frac{1}{n}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\cdots+\frac{1}{(n-1) n} .
$$

This construction works provided that $n \neq k(k+1)$ for any k. Otherwise, we have $n \geq 6$, and instead we apply the above to the sum $1=1 / 2+1 / 3+1 / 10+1 / 15$, taking $k=3$, $r=n-4$ to yield

$$
1=\frac{1}{2}+\frac{1}{10}+\frac{1}{15}+\frac{1}{n-1}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\cdots+\frac{1}{(n-2)(n-1)}
$$

The above then works, because if $n=k(k+1)$ for some k, then $n-1 \neq 2,10,15$, and $n-1 \neq m(m+1)$ for any m by parity, since $n-1$ is odd and $m(m+1)$ is always even. This construction is not unique; there are other similar ones.
6. In $\triangle A B C$, let D be the point on side $B C$ such that $A B+B D=D C+C A$. The line $A D$ intersects the circumcircle of $\triangle A B C$ again at point $X \neq A$. Prove that one of the common tangents of the circumcircles of $\triangle B D X$ and $\triangle C D X$ is parallel to $B C$.

Solution. Refer to the figure shown below:

Let V and W be the midpoints of $\operatorname{arcs} B D$ and $C D$ respectively. We claim that $V W$ is the desired common tangent. To prove this, let E and F be the orthogonal projections of V and W onto $B C$. Note that E and F are the midpoints of $B D$ and $C D$ respectively. Now we claim that $V E=W F$. To see this, note that

$$
\begin{aligned}
V E & =B V \sin \angle V B E \\
& =\frac{B X \sin \angle B X V}{\sin \angle B D X} \sin \frac{\angle B X D}{2} \\
& =\frac{B X \sin \frac{\angle B X A}{2}}{\sin \angle B D X} \sin \frac{C}{2} \\
& =\frac{B X}{\sin \angle B D X} \sin ^{2} \frac{C}{2} .
\end{aligned}
$$

Similarly, we can prove that $W F=\frac{C X}{\sin \angle C D X} \sin ^{2} \frac{B}{2}$. Thus, to prove the claim, it suffices to prove that $\frac{B X}{C X}=\frac{\sin ^{2} \frac{B}{2}}{\sin ^{2} \frac{C}{2}}$. This is because

$$
\frac{B X}{C X}=\frac{\sin \angle B A D}{\sin \angle C A D}=\frac{c / B D}{b / C D}=\frac{c(s-c)}{b(s-b)}=\frac{\sin ^{2} \frac{B}{2}}{\sin ^{2} \frac{C}{2}} .
$$

This proves the first claim.
Next, we claim that $V W$ is the desired common tangent. Note that from the first claim, $V W F E$ is a rectangle, since $\angle V E F$ and $\angle W F E$ are both right angles. Let O_{1} and O_{2} be the circumcenters of triangles $B D X$ and $C D X$ respectively. Then $O_{1} V \perp E F$, so since $E F \| V W$ we get $O_{1} V \perp V W$. Likewise, $O_{2} W \perp V W$ as well, which proves the second claim.
It then follows that $V W$ is the desired common tangent parallel to $B C$, and the required conclusion follows.
7. Let a, b, and c be positive real numbers such that $a b+b c+c a=3$. Show that

$$
\frac{b c}{1+a^{4}}+\frac{c a}{1+b^{4}}+\frac{a b}{1+c^{4}} \geq \frac{3}{2}
$$

Solution. It can be shown that

$$
\frac{1}{1+a^{4}} \geq \frac{2-a^{2}}{2}
$$

Indeed, simplifying yields

$$
\begin{aligned}
& 2 \geq\left(1+a^{4}\right)\left(2-a^{2}\right) \\
&\left(a^{4}+1\right)\left(a^{2}-2\right)+2 \geq 0 \\
& a^{6}-2 a^{4}+a^{2}-2+2 \geq 0 \\
& a^{6}-2 a^{4}+a^{2} \geq 0 \\
& a^{2}\left(a^{4}-2 a^{2}+1\right) \geq 0 \\
& a^{2}\left(a^{2}-1\right)^{2} \geq 0
\end{aligned}
$$

which is true.
Thus

$$
\begin{aligned}
& \frac{1}{1+a^{4}} \geq \frac{2-a^{2}}{2} \\
& \frac{b c}{1+a^{4}} \geq \frac{2 b c-a^{2} b c}{2} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\frac{c a}{1+b^{4}} & \geq \frac{2 c a-a b^{2} c}{2}, \text { and } \\
\frac{a b}{1+c^{4}} & \geq \frac{2 a b-a b c^{2}}{2}
\end{aligned}
$$

Adding these up yields

$$
\frac{b c}{1+a^{4}}+\frac{c a}{1+b^{4}}+\frac{a b}{1+c^{4}} \geq(b c+c a+a b)-\frac{a^{2} b c+a b^{2} c+a b c^{2}}{2} .
$$

Observe that

$$
\begin{aligned}
(a b+b c+c a)^{2} & \geq 3((a b)(b c)+(b c)(c a)+(c a)(a b)) \\
9 & \geq 3\left(a^{2} b c+a b^{2} c+a b c^{2}\right) \\
3 & \geq a^{2} b c+a b^{2} c+a b c^{2} .
\end{aligned}
$$

Thus,

$$
(b c+c a+a b)-\frac{a^{2} b c+a b^{2} c+a b c^{2}}{2} \geq 3-\frac{3}{2}=\frac{3}{2} .
$$

Therefore,

$$
\frac{b c}{1+a^{4}}+\frac{c a}{1+b^{4}}+\frac{a b}{1+c^{4}} \geq \frac{3}{2} .
$$

8. The set $S=\{1,2, \ldots, 2022\}$ is to be partitioned into n disjoint subsets $S_{1}, S_{2}, \ldots, S_{n}$ such that for each $i \in\{1,2, \ldots, n\}$, exactly one of the following statements is true:
(a) For all $x, y \in S_{i}$ with $x \neq y, \operatorname{gcd}(x, y)>1$.
(b) For all $x, y \in S_{i}$ with $x \neq y, \operatorname{gcd}(x, y)=1$.

Find the smallest value of n for which this is possible.
Solution. The answer is 15 .
Note that there are 14 primes at most $\sqrt{2022}$, starting with 2 and ending with 43 . Thus, the following partition works for 15 sets. Let $S_{1}=\{2,4, \ldots, 2022\}$, the multiples of 2 in S. Let $S_{2}=\{3,9,15 \ldots, 2019\}$, the remaining multiples of 3 in S not in S_{1}. Let $S_{3}=\{5,25,35, \ldots, 2015\}$ the remaining multiples of 5 , and so on and so forth, until we get to $S_{14}=\{43,1849,2021\} . S_{15}$ consists of the remaining elements, i.e. 1 and those numbers with no prime factors at most 43, i.e., the primes greater than 43 but less than 2022: $S_{15}=\{1,47,53,59, \ldots, 2017\}$. Each of $S_{1}, S_{2}, \ldots, S_{14}$ satisfies i., while S_{15} satisfies ii.

We show now that no partition in 14 subsets is possible. Let a Type 1 subset of S be a subset S_{i} for which i. is true and there exists an integer $d>1$ for which d divides every element of S_{i}. Let a Type 2 subset of S be a subset S_{i} for which ii. is true. Finally, let a Type 3 subset of S be a subset S_{i} for which i. is true that is not a Type 1 subset. An example of a Type 3 subset would be a set of the form $\{p q, q r, p r\}$ where p, q, r are distinct primes.
Claim: Let $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ be the sequence of prime numbers, where p_{k} is the k th prime. Every optimal partition of the set $S(k):=\left\{1,2, \ldots, p_{k}^{2}\right\}$, i.e., a partition with the least possible number of subsets, has at least $k-1$ Type 1 subsets. In particular, every optimal partition of this set has $k+1$ subsets in total. To see how this follows, we look at two cases:

- If every prime $p \leq p_{k}$ has a corresponding Type 1 subset containing its multiples, then a similar partitioning to the above works: Take S_{1} to S_{k} as Type 1 subsets for each prime, and take S_{k+1} to be everything left over. S_{k+1} will never be empty, as it has 1 in it. While in fact it is known that, for example, by Bertrand's postulate there is always some prime between p_{k} and p_{k}^{2} so S_{k+1} has at least two elements, there is no need to go this far-if there were no other primes you could just move 2 from S_{1} into S_{k+1}, and if $k>1$ then S_{1} will still have at least three elements remaining. And if $k=1$, there is no need to worry about this, because $2<3<2^{2}$.
- On the other hand, if $p \leq p_{k}$ has no corresponding Type 1 subset, then p and p^{2} will not be contained in a Type 1 set. Neither can p nor p^{2} be contained in a Type 3 set. If $\operatorname{gcd}(p, x)>1$ for all x in the same set as p, then $\operatorname{gcd}(p, x)=p$, which implies that p is in a Type 1 set with $d=p$. Similarly, if $\operatorname{gcd}\left(p^{2}, x\right)>1$ for all x in the same set as p^{2}, then $p \mid \operatorname{gcd}\left(p^{2}, x\right)$ for all x, and so p^{2} is in a Type 1 set with $d=p$ as well. Hence p and p^{2} must in fact be in Type 2 sets, and they cannot be in the same Type 2 set (as they share a common factor of $p>1$); this means that the optimal partition has at least $k+1$ subsets in total. A possible equality scenario for example is the sets $S_{1}=\left\{1,2,3,5, \ldots, p_{k}\right\}, S_{2}=\left\{4,9,25, \ldots, p_{k}^{2}\right\}$, and S_{3} to S_{k+1} Type 1 sets taking all remaining multiples of $2,3,5, \ldots, p_{k-1}$. This works, as p_{k} and p_{k}^{2} are the only multiples of p_{k} in $S(k)$ with no prime factor other than p_{k} and thus cannot be classified into some other Type 1 set.

To prove our claim: We proceed by induction on k. Trivially, this is true for $k=1$. Suppose now that any optimal partition of the set $S(k)$ has at least $k-1$ Type 1 subsets, and thus at least $k+1$ subsets in total. Consider now a partition of the set $S(k+1)$, and suppose that this partition would have at most $k+1$ subsets. From the above, there exist at least two primes p, q with $p<q \leq p_{k+1}$ for which there are no Type 1 subsets. If $q<p_{k+1}$ we have a contradiction. Any such partition can be restricted to an optimal partition of $S(k)$ with $p<q \leq p_{k}$ having no corresponding Type 1 subsets. This contradicts our inductive hypothesis. On the other hand, suppose that $q=p_{k+1}$. Again restricting to $S(k)$ gives us an optimal partition of $S(k)$ with at most $k-1$ Type 1 sets; the inductive hypothesis tells us that this partition has in fact exactly $k-1$ Type 1 sets and two Type 2 sets from a previous argument establishing the consequence of the claim. However, consider now the element $p q$. This cannot belong in any Type 1 set, neither can it belong in the same Type 2 set as p or p^{2}. Thus in addition to the given $k-1$ Type 1 sets and 2 Type 2 sets, we need an extra set to contain $p q$. Thus our partition of $S(k+1)$ in fact has at least $k-1+2+1=k+2$ subsets, and not $k+1$ subsets as we wanted. The claim is thus proved.
Returning to our original problem, since $p_{14}=43<\sqrt{2022}$, any partition of S must restrict to a partition of $S(14)$, which we showed must have at least 15 sets. Thus, we can do no better than 15 .

