
24th Philippine Mathematical Olympiad

National Stage (Day 1)

18 March 2022

Time: 4.5 hours Each item is worth 7 points.

1. Find all functions f : R → R such that

f(a− b)f(c− d) + f(a− d)f(b− c) ≤ (a− c)f(b− d)

for all real numbers a, b, c, and d.

2. The PMO Magician has a special party game. There are n chairs, labelled 1 to n. There are
n sheets of paper, labelled 1 to n.

� On each chair, she attaches exactly one sheet whose number does not match the number
on the chair.

� She then asks n party guests to sit on the chairs so that each chair has exactly one
occupant.

� Whenever she claps her hands, each guest looks at the number on the sheet attached to
their current chair, and moves to the chair labelled with that number.

Show that if 1 < m ≤ n, where m is not a prime power, it is always possible for the PMO
Magician to choose which sheet to attach to each chair so that everyone returns to their original
seats after exactly m claps.

3. Call a lattice point visible if the line segment connecting the point and the origin does not pass
through another lattice point. Given a positive integer k, denote by Sk the set of all visible
lattice points (x, y) such that x2 + y2 = k2. Let D denote the set of all positive divisors of
2021 · 2025. Compute the sum

∑
d∈D

|Sd|.

Here, a lattice point is a point (x, y) on the plane where both x and y are integers, and |A|
denotes the number of elements of the set A.

4. Let △ABC have incenter I and centroid G. Suppose that PA is the foot of the perpendicular
from C to the exterior angle bisector of B, and QA is the foot of the perpendicular from B to
the exterior angle bisector of C. Define PB, PC , QB, and QC similarly. Show that PA, PB,
PC , QA, QB, and QC lie on a circle whose center is on line IG.
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Time: 4.5 hours Each item is worth 7 points.

5. Find all positive integers n for which there exists a set of exactly n distinct
positive integers, none of which exceed n2, whose reciprocals add up to 1.

6. In△ABC, letD be the point on side BC such that AB+BD = DC+CA.
The line AD intersects the circumcircle of △ABC again at point X ̸= A.
Prove that one of the common tangents of the circumcircles of △BDX
and △CDX is parallel to BC.

7. Let a, b, and c be positive real numbers such that ab+ bc+ ca = 3. Show
that

bc

1 + a4
+

ca

1 + b4
+

ab

1 + c4
≥ 3

2
.

8. The set S = {1, 2, . . . , 2022} is to be partitioned into n disjoint subsets
S1, S2, . . . , Sn such that for each i ∈ {1, 2, . . . , n}, exactly one of the fol-
lowing statements is true:

(a) For all x, y ∈ Si with x ̸= y, gcd(x, y) > 1.

(b) For all x, y ∈ Si with x ̸= y, gcd(x, y) = 1.

Find the smallest value of n for which this is possible.
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1. Find all functions f : R → R such that

f(a− b)f(c− d) + f(a− d)f(b− c) ≤ (a− c)f(b− d)

for all real numbers a, b, c, and d.

Solution. We claim that the only solutions are f(x) = 0 and f(x) = x. It is easy to see
that both satisfy the functional inequality. We now show that no other functions satisfy
the given condition.

Letting a = b = c = d yields 2f(0)2 ≤ 0 which implies f(0) = 0. Now, suppose that
f ̸≡ 0. Then we can find p ∈ R such that f(p) ̸= 0. For a ∈ R, let b = a, c = 0, and
d = a− p. We then have

f(p)f(a) ≤ af(p).

Case 1: Suppose f(p) > 0. Then f(a) ≤ a for all a ∈ R. In particular f(−1) < 0. In
the original functional equation, letting b = a, c = 0, and d = a+ 1 yields f(−1)f(a) ≤
af(−1) for all a ∈ R. Hence, f(a) ≥ a for all a ∈ R. Thus for this case, f(x) = x for all
x ∈ R.

Case 2: Suppose f(p) < 0. Then f(a) ≥ a for all a ∈ R. In particular f(1) > 0. In the
original functional equation, letting b = a, c = 0, and d = a− 1 yields f(1)f(a) ≤ af(1)
for all a ∈ R. Hence, f(a) ≤ a for all a ∈ R. Thus for this case, f(x) = x for all x ∈ R.

2

2. The PMO Magician has a special party game. There are n chairs, labelled 1 to n. There
are n sheets of paper, labelled 1 to n.

� On each chair, she attaches exactly one sheet whose number does not match the
number on the chair.

� She then asks n party guests to sit on the chairs so that each chair has exactly one
occupant.

� Whenever she claps her hands, each guest looks at the number on the sheet attached
to their current chair, and moves to the chair labelled with that number.

Show that if 1 < m ≤ n, where m is not a prime power, it is always possible for the
PMO Magician to choose which sheet to attach to each chair so that everyone returns
to their original seats after exactly m claps.

Solution. Decompose the permutation into cycles of lengths c1, c2, c3, . . . , ck. Note that
c1 + c2 + · · ·+ ck = n. A guest in a cycle of length c returns to their original seat after
c claps. Thus, all guests return to their original seats after lcm{ci} claps.



Let m = pq, where p and q are coprime and both greater than 1; if m > 1 is not a
prime power, then it has at least two different prime factors, so this is always possible.
Suppose we have at least one cycle of lengths p and q, and all cycles are of lengths p or
q. Then, all guests will return to their original seats after lcm{p, q} = m claps.

Ifm = n, we can just connect all n party guests in one big cycle of sizem = n. Otherwise,
m < n, and note that the problem is equivalent to finding a nonnegative integer solution
to px+ qy = n− p− q. Since m < n, a solution always exists by the Chicken McNugget
Theorem, completing the proof. 2

3. Call a lattice point visible if the line segment connecting the point and the origin does
not pass through another lattice point. Given a positive integer k, denote by Sk the set
of all visible lattice points (x, y) such that x2 + y2 = k2. Let D denote the set of all
positive divisors of 2021 · 2025. Compute the sum∑

d∈D

|Sd|.

Here, a lattice point is a point (x, y) on the plane where both x and y are integers, and
|A| denotes the number of elements of the set A.

Solution. We claim that the required sum is 20.

Let Tk denote the set of all lattice points in the circle x2 + y2 = k2. We claim that∑
d|k |Sd| = |Tk|. Indeed, given a point (x, y) in Tk, let g = gcd(x, y). Then x/g, y/g are

necessarily coprime, and hence (x/g, y/g) visible, and (x/g)2 + (y/g)2 = (k/g)2. This
implies (x/g, y/g) ∈

⋃
d|k Sd. Next, note that the Sd’s are necessarily disjoint. Now

if (x′, y′) is a visible lattice point in Sd where d|k, then we can write k = gd so that
(x, y) = (gx′, gy′) is a lattice point in Tk. This establishes a bijection between

⋃
d|k Sd

and Tk, and since the Sd’s are disjoint, the claim follows.

From the claim, it suffices to find the number of lattice points in the circle x2 + y2 =
(2021 · 2025)2. This is equivalent to

x2 + y2 = 38 · 54 · 432 · 472.

Now it is well-known that if x2 + y2 ≡ 0 (mod p) where p ≡ 3 (mod 4) is a prime,
then x ≡ y ≡ 0 (mod p). Thus, we must also have x, y ≡ 0 (mod 34 · 43 · 47). It then
follows that the number of lattice points is the same as the number of lattice points in
x2 + y2 = 252.

If x = 0 or y = 0, there are 4 solutions. Otherwise, assume WLOG that they are
both positive. Now it is well-known that all solutions to x2 + y2 = z2 are in the form
x = g(m2 − n2), y = 2gmn, and z = g(m2 + n2), where m > n are coprime positive
integers, and g is a positive integer. Thus, we want g(m2 + n2) = 25. Note that g|25, so
g = 1, 5, 25.

If g = 25, then m2 + n2 = 1, so n = 0, contradiction. If g = 5, then m2 + n2 = 5,
which yields m = 2 and n = 1 and thus g(m2 − n2) = 15 and 2gmn = 20, so (x, y) =
(15, 20), (20, 15). If g = 1, then we get m2 + n2 = 25, from which we obtain m = 4 and
n = 3. It then follows that (x, y) = (24, 7), (7, 24), and so we have 2 solutions when x, y
are both positive. This implies that there are 4 · 4 = 16 solutions when x, y are nonzero,
and so there are 4 + 16 = 20 solutions in total. 2



4. Let △ABC have incenter I and centroid G. Suppose that PA is the foot of the perpen-
dicular from C to the exterior angle bisector of B, and QA is the foot of the perpendicular
from B to the exterior angle bisector of C. Define PB, PC , QB, and QC similarly. Show
that PA, PB, PC , QA, QB, and QC lie on a circle whose center is on line IG.

Solution. Refer to the figure shown below:

Let MA,MB, and MC be the midpoints of BC,CA, and AB respectively.

First, it may be shown that PB and QC lie on MBMC .

Note that ∠AMCQC = 2∠ABQC = 180◦ − ∠ABC = ∠BMCMB. Thus, QC lies on
MBMC . Likewise, AMBPB = 2∠ACPB = 180◦ − ∠ACB = ∠CMBMC . Thus, PB also
lies on MBMC .

Similarly, PC and QA lie on MCMA, and PA and QB lie on MAMB.

Now, as MA is the center of the circle passing through B,C,QA, and PA, then MAPA =
MAQA, so the angle bisector of ∠MCMAMB coincides with the perpendicular bisector
of PAQA.

Observe that MCQA = MCMA+MAQA = CA
2
+ BC

2
= MBPB +MCMB = MCPB. Thus,

the perpendicular bisector of QAPB coincides with the angle bisector of ∠MBMCMA.

Using similar observations, it may then be concluded that the perpendicular bisec-
tors of PAQA, QAPB, PBQB, QBPC , PCQC , and QCPA all concur at the incenter of
△MAMBMC . Thus, the latter must also be the center of the circle containing all six
points. As the medial triangle is the image of a homothety on △ABC with center G
having a scale factor of −0.5, then the incenter of △MAMBMC must lie on IG. 2

5. Find all positive integers n for which there exists a set of exactly n distinct positive
integers, none of which exceed n2, whose reciprocals add up to 1.

Solution. The answer is all n ̸= 2. For n = 1, the set {1} works. For n = 2, no set exists,
simply because the sum of reciprocals of two distinct integers cannot be equal to 1. For
n = 3, take {2, 3, 6}.
For n > 3, the identity

1

k
=

1

k + r
+

1

k(k + 1)
+

1

(k + 1)(k + 2)
+ · · ·+ 1

(k + r − 1)(k + r)



allows us to extend a sum of t terms to one of exactly t + r terms. Taking k = 3 and
r = n− 3 allows us to turn the sum 1 = 1/2 + 1/3 + 1/6 to the n-term sum

1 =
1

2
+

1

6
+

1

n
+

1

3 · 4
+

1

4 · 5
+ · · ·+ 1

(n− 1)n
.

This construction works provided that n ̸= k(k+1) for any k. Otherwise, we have n ≥ 6,
and instead we apply the above to the sum 1 = 1/2 + 1/3 + 1/10 + 1/15, taking k = 3,
r = n− 4 to yield

1 =
1

2
+

1

10
+

1

15
+

1

n− 1
+

1

3 · 4
+

1

4 · 5
+ · · ·+ 1

(n− 2)(n− 1)
.

The above then works, because if n = k(k + 1) for some k, then n − 1 ̸= 2, 10, 15, and
n− 1 ̸= m(m+ 1) for any m by parity, since n− 1 is odd and m(m+ 1) is always even.

This construction is not unique; there are other similar ones. 2

6. In △ABC, let D be the point on side BC such that AB + BD = DC + CA. The line
AD intersects the circumcircle of △ABC again at point X ̸= A. Prove that one of the
common tangents of the circumcircles of △BDX and △CDX is parallel to BC.

Solution. Refer to the figure shown below:

Let V and W be the midpoints of arcs BD and CD respectively. We claim that VW is
the desired common tangent. To prove this, let E and F be the orthogonal projections
of V and W onto BC. Note that E and F are the midpoints of BD and CD respectively.
Now we claim that V E = WF . To see this, note that

V E = BV sin∠V BE

=
BX sin∠BXV

sin∠BDX
sin

∠BXD

2

=
BX sin ∠BXA

2

sin∠BDX
sin

C

2

=
BX

sin∠BDX
sin2 C

2
.



Similarly, we can prove that WF = CX
sin∠CDX

sin2 B
2
. Thus, to prove the claim, it suffices

to prove that
BX

CX
=

sin2 B
2

sin2 C
2

. This is because

BX

CX
=

sin∠BAD

sin∠CAD
=

c/BD

b/CD
=

c(s− c)

b(s− b)
=

sin2 B
2

sin2 C
2

.

This proves the first claim.

Next, we claim that VW is the desired common tangent. Note that from the first claim,
VWFE is a rectangle, since ∠V EF and ∠WFE are both right angles. Let O1 and O2

be the circumcenters of triangles BDX and CDX respectively. Then O1V ⊥ EF , so
since EF ||VW we get O1V ⊥ VW . Likewise, O2W ⊥ VW as well, which proves the
second claim.

It then follows that VW is the desired common tangent parallel to BC, and the required
conclusion follows. 2

7. Let a, b, and c be positive real numbers such that ab+ bc+ ca = 3. Show that

bc

1 + a4
+

ca

1 + b4
+

ab

1 + c4
≥ 3

2
.

Solution. It can be shown that
1

1 + a4
≥ 2− a2

2
.

Indeed, simplifying yields

2 ≥ (1 + a4)(2− a2)

(a4 + 1)(a2 − 2) + 2 ≥ 0

a6 − 2a4 + a2 − 2 + 2 ≥ 0

a6 − 2a4 + a2 ≥ 0

a2(a4 − 2a2 + 1) ≥ 0

a2(a2 − 1)2 ≥ 0

which is true.

Thus

1

1 + a4
≥ 2− a2

2
bc

1 + a4
≥ 2bc− a2bc

2
.

Similarly
ca

1 + b4
≥ 2ca− ab2c

2
, and

ab

1 + c4
≥ 2ab− abc2

2
.



Adding these up yields

bc

1 + a4
+

ca

1 + b4
+

ab

1 + c4
≥ (bc+ ca+ ab)− a2bc+ ab2c+ abc2

2
.

Observe that
(ab+ bc+ ca)2 ≥ 3((ab)(bc) + (bc)(ca) + (ca)(ab))

9 ≥ 3(a2bc+ ab2c+ abc2)

3 ≥ a2bc+ ab2c+ abc2.

Thus,

(bc+ ca+ ab)− a2bc+ ab2c+ abc2

2
≥ 3− 3

2
=

3

2
.

Therefore,
bc

1 + a4
+

ca

1 + b4
+

ab

1 + c4
≥ 3

2
.

2

8. The set S = {1, 2, . . . , 2022} is to be partitioned into n disjoint subsets S1, S2, . . . , Sn

such that for each i ∈ {1, 2, . . . , n}, exactly one of the following statements is true:

(a) For all x, y ∈ Si with x ̸= y, gcd(x, y) > 1.

(b) For all x, y ∈ Si with x ̸= y, gcd(x, y) = 1.

Find the smallest value of n for which this is possible.

Solution. The answer is 15.

Note that there are 14 primes at most
√
2022, starting with 2 and ending with 43. Thus,

the following partition works for 15 sets. Let S1 = {2, 4, . . . , 2022}, the multiples of 2
in S. Let S2 = {3, 9, 15 . . . , 2019}, the remaining multiples of 3 in S not in S1. Let
S3 = {5, 25, 35, . . . , 2015} the remaining multiples of 5, and so on and so forth, until
we get to S14 = {43, 1849, 2021}. S15 consists of the remaining elements, i.e. 1 and
those numbers with no prime factors at most 43, i.e., the primes greater than 43 but
less than 2022: S15 = {1, 47, 53, 59, . . . , 2017}. Each of S1, S2, . . . , S14 satisfies i., while
S15 satisfies ii.

We show now that no partition in 14 subsets is possible. Let a Type 1 subset of S be a
subset Si for which i. is true and there exists an integer d > 1 for which d divides every
element of Si. Let a Type 2 subset of S be a subset Si for which ii. is true. Finally,
let a Type 3 subset of S be a subset Si for which i. is true that is not a Type 1 subset.
An example of a Type 3 subset would be a set of the form {pq, qr, pr} where p, q, r are
distinct primes.

Claim: Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of prime numbers, where pk is the
kth prime. Every optimal partition of the set S(k) := {1, 2, . . . , p2k}, i.e., a partition with
the least possible number of subsets, has at least k − 1 Type 1 subsets. In particular,
every optimal partition of this set has k+1 subsets in total. To see how this follows, we
look at two cases:



� If every prime p ≤ pk has a corresponding Type 1 subset containing its multiples,
then a similar partitioning to the above works: Take S1 to Sk as Type 1 subsets for
each prime, and take Sk+1 to be everything left over. Sk+1 will never be empty, as
it has 1 in it. While in fact it is known that, for example, by Bertrand’s postulate
there is always some prime between pk and p2k so Sk+1 has at least two elements,
there is no need to go this far–if there were no other primes you could just move
2 from S1 into Sk+1, and if k > 1 then S1 will still have at least three elements
remaining. And if k = 1, there is no need to worry about this, because 2 < 3 < 22.

� On the other hand, if p ≤ pk has no corresponding Type 1 subset, then p and p2

will not be contained in a Type 1 set. Neither can p nor p2 be contained in a Type
3 set. If gcd(p, x) > 1 for all x in the same set as p, then gcd(p, x) = p, which
implies that p is in a Type 1 set with d = p. Similarly, if gcd(p2, x) > 1 for all x in
the same set as p2, then p | gcd(p2, x) for all x, and so p2 is in a Type 1 set with
d = p as well. Hence p and p2 must in fact be in Type 2 sets, and they cannot be in
the same Type 2 set (as they share a common factor of p > 1); this means that the
optimal partition has at least k + 1 subsets in total. A possible equality scenario
for example is the sets S1 = {1, 2, 3, 5, . . . , pk}, S2 = {4, 9, 25, . . . , p2k}, and S3 to
Sk+1 Type 1 sets taking all remaining multiples of 2, 3, 5, . . . , pk−1. This works, as
pk and p2k are the only multiples of pk in S(k) with no prime factor other than pk
and thus cannot be classified into some other Type 1 set.

To prove our claim: We proceed by induction on k. Trivially, this is true for k = 1.
Suppose now that any optimal partition of the set S(k) has at least k−1 Type 1 subsets,
and thus at least k + 1 subsets in total. Consider now a partition of the set S(k + 1),
and suppose that this partition would have at most k + 1 subsets. From the above,
there exist at least two primes p, q with p < q ≤ pk+1 for which there are no Type 1
subsets. If q < pk+1 we have a contradiction. Any such partition can be restricted to
an optimal partition of S(k) with p < q ≤ pk having no corresponding Type 1 subsets.
This contradicts our inductive hypothesis. On the other hand, suppose that q = pk+1.
Again restricting to S(k) gives us an optimal partition of S(k) with at most k− 1 Type
1 sets; the inductive hypothesis tells us that this partition has in fact exactly k−1 Type
1 sets and two Type 2 sets from a previous argument establishing the consequence of
the claim. However, consider now the element pq. This cannot belong in any Type 1
set, neither can it belong in the same Type 2 set as p or p2. Thus in addition to the
given k− 1 Type 1 sets and 2 Type 2 sets, we need an extra set to contain pq. Thus our
partition of S(k + 1) in fact has at least k − 1 + 2 + 1 = k + 2 subsets, and not k + 1
subsets as we wanted. The claim is thus proved.

Returning to our original problem, since p14 = 43 <
√
2022, any partition of S must

restrict to a partition of S(14), which we showed must have at least 15 sets. Thus, we
can do no better than 15. 2


