




























24th Philippine Mathematical Olympiad
Qualifying Stage, 19 February 2022

PART I. Choose the best answer. Figures are not drawn to scale. Each correct answer is worth two
points.

1. Let XZ be a diameter of circle ω. Let Y be a point on XZ such that XY = 7 and Y Z = 1. Let
W be a point on ω such that WY is perpendicular to XZ. What is the square of the length of
the line segment WY ?

(a) 7 (b) 8 (c) 10 (d) 25

2. How many five-digit numbers containing each of the digits 1, 2, 3, 4, 5 exactly once are divisible
by 24?

(a) 8 (b) 10 (c) 12 (d) 20

3. A lattice point is a point (x, y) where x and y are both integers. Find the number of lattice
points that lie on the closed line segment whose endpoints are (2002, 2022) and (2022, 2202).

(a) 20 (b) 21 (c) 22 (d) 23

4. Let ω ̸= −1 be a complex root of x3 + 1 = 0. What is the value of 1 + 2ω + 3ω2 + 4ω3 + 5ω4?

(a) 3 (b) −4 (c) 5 (d) −6

5. How many ending zeroes does the decimal expansion of 2022! have?

(a) 404 (b) 484 (c) 500 (d) 503

6. Two tigers, Alice and Betty, run in the same direction around a circular track of circumference
400 meters. Alice runs at a speed of 10 m/s and Betty runs at 15 m/s. Betty gives Alice a 40
meter headstart before they both start running. After 15 minutes, how many times will they
have passed each other?

(a) 9 (b) 10 (c) 11 (d) 12

7. Suppose a, b, c are the roots of the polynomial x3 + 2x2 + 2. Let f be the unique monic
polynomial whose roots are a2, b2, c2. Find f(1). (Note: A monic polynomial is a polynomial
whose leading coefficient is 1.)

(a) −17 (b) −16 (c) −15 (d) −14

8. Let I be the center of the incircle of triangle ABC. Suppose that this incircle has radius 3, and
that AI = 5. If the area of the triangle is 2022, what is the length of BC?

(a) 670 (b) 672 (c) 1340 (d) 1344



9. A square is divided into eight triangles as shown below. How many ways are there to shade
exactly three of them so that no two shaded triangles share a common edge?

(a) 12 (b) 16 (c) 24 (d) 30

10. The numbers 2, b, c, d, 72 are listed in increasing order so that 2, b, c form an arithmetic sequence,
b, c, d form a geometric sequence, and c, d, 72 form a harmonic sequence (that is, a sequence
whose reciprocals of its terms form an arithmetic sequence). What is the value of b+ c?

(a) 7 (b) 13 (c) 19 (d) 25

11. How many positive integers n < 2022 are there for which the sum of the odd positive divisors
of n is 24?

(a) 7 (b) 8 (c) 14 (d) 15

12. Call a whole number ordinary if the product of its digits is less than or equal to the sum of its
digits. How many numbers from the set {1, 2, . . . , 999} are ordinary?

(a) 151 (b) 162 (c) 230 (d) 241

13. What is the area of the shaded region of the square below?

(a) 7 (b) 11 (c) 15 (d) 19

14. Bryce plays a game in which he flips a fair coin repeatedly. In each flip, he obtains two tokens
if the coin lands on heads, and loses one token if the coin lands on tails. At the start, Bryce
has nine tokens. If after nine flips, he also ends up with nine tokens, what is the probability
that Bryce always had at least nine tokens?

(a) 1/7 (b) 1/6 (c) 5/28 (d) 17/84



15. How many ways are there to arrange the first ten positive integers such that the multiples of 2
appear in increasing order, and the multiples of 3 appear in decreasing order?

(a) 720 (b) 2160 (c) 5040 (d) 6480

PART II. All answers are positive integers. Do not use commas if there are more than 3 digits, e.g.,
type 1234 instead of 1, 234. A fraction a/b is in lowest terms if a and b are both positive integers
whose greatest common factor is 1. Each correct answer is worth five points.

16. What is the largest multiple of 7 less than 10,000 which can be expressed as the sum of squares
of three consecutive numbers?

17. Suppose that the polynomial P (x) = x3 + 4x2 + bx + c has a single root r and a double root
s for some distinct real numbers r and s. Given that P (−2s) = 324, what is the sum of all
possible values of |c|?

18. Let m and n be relatively prime positive integers. If m3n5 has 209 positive divisors, then how
many positive divisors does m5n3 have?

19. Let x be a positive real number. What is the maximum value of
2022x2 log(x+ 2022)

(log(x+ 2022))3 + 2x3
?

20. Let a, b, c be real numbers such that

3ab+ 2 = 6b, 3bc+ 2 = 5c, 3ca+ 2 = 4a.

Suppose the only possible values for the product abc are r/s and t/u, where r/s and t/u are
both fractions in lowest terms. Find r + s+ t+ u.

21. You roll a fair 12-sided die repeatedly. The probability that all the primes show up at least
once before seeing any of the other numbers can be expressed as a fraction p/q in lowest terms.
What is p+ q?

22. Let PMO be a triangle with PM = 2 and ∠PMO = 120◦. Let B be a point on PO such that
PM is perpendicular to MB, and suppose that PM = BO. The product of the lengths of the
sides of the triangle can be expressed in the form a + b 3

√
c, where a, b, c are positive integers,

and c is minimized. Find a+ b+ c.

23. Let ABC be a triangle such that the altitude from A, the median from B, and the internal
angle bisector from C meet at a single point. If BC = 10 and CA = 15, find AB2.

24. Find the sum of all positive integers n, 1 ≤ n ≤ 5000, for which

n2 + 2475n+ 2454 + (−1)n

is divisible by 2477. (Note that 2477 is a prime number.)

25. For a real number x, let ⌊x⌋ denote the greatest integer not exceeding x. Consider the function

f(x, y) =
√
M(M + 1)

(
|x−m|+ |y −m|

)
,

where M = max(⌊x⌋, ⌊y⌋) and m = min(⌊x⌋, ⌊y⌋). The set of all real numbers (x, y) such that
2 ≤ x, y ≤ 2022 and f(x, y) ≤ 2 can be expressed as a finite union of disjoint regions in the
plane. The sum of the areas of these regions can be expressed as a fraction a/b in lowest terms.
What is the value of a+ b?



Answers

Part I. (2 points each)

1. A

2. B

3. B

4. D

5. D

6. D

7. C

8. A

9. B

10. C

11. D

12. D

13. D

14. A

15. D

Part II. (5 points each)

16. 8750

Let the number be expressed as a2 + (a + 1)2 + (a + 2)2, where a is an integer. It may be
checked that this expression is a multiple of 7 if and only if the remainder when a is divided
by 7 is 1 or 4. In the former case, the largest possible value of a that places the value of the
expression within bounds is 50, which gives the value 502 + 512 + 522 = 7805. In the latter
case, the largest such value of a is 53, which gives the value 532 + 542 + 552 = 8750.

17. 108

By Vieta’s formula, we have r + 2s = −4 and writing P (x) = (x − r)(x − s)2, we have
324 = P (−2s) = (−2s − r)(−3s)2 = 36s2. Thus, s2 = 9 and s ∈ {−3, 3}. We next observe
that |c| = |P (0)| = |r|s2 = | − 4 − 2s|s2. Hence, the sum of all possible values of |c| is
9(| − 4− 6|+ | − 4 + 6| = 108.

18. 217

Let d(N) denote the number of positive divisors of an integer N . Suppose that the prime
factorizations of m and n are

∏
(paii ) and

∏
(qbii ) respectively. Observe that 209 has four

positive divisors: 1, 11, 19, 209. If m = 1, then n5 would have 209 divisors. Thus, d(n5) = 209.
However, it is known that d(n5) =

∏
(5bi + 1), but the latter implies that the remainder of

d(n5) when divided by 5 is 1, a contradiction.

Likewise, if n = 1, then it implies that the remainder when d(m3) = 209 is divided by 3 is 1,
also a contradiction.

Thus, m,n > 1, so d(m), d(n) > 1. As m and n are relatively prime, then d(m3n5) =
d(m3)d(n5). As the only way to factor 209 as a product of 2 integers greater than 1 is as
11 · 19, then d(m3) and d(n5) are 11 and 19 in some order. As the remainder when d(m3)
and d(n5) is divided by 3 and 5 respectively is 1, then d(m3) = 19 = (3 · 6 + 1), and
d(n5) = 11 = (5 · 2 + 1). Thus, m and n can be expressed as p6 and q2 respectively. Therefore,
d(m5n3) = d(p30q6) = (30 + 1)(6 + 1) = 217.

19. 674

By the AM-GM Inequality,

2022x2 log(x+ 2022)

log3(x+ 2022) + 2x3
=

2022x2 log(x+ 2022)

log3(x+ 2022) + x3 + x3

≤ 2022x2 log(x+ 2022)

3(x6 log3(x+ 2022))
1
3

=
2022x2 log(x+ 2022)

3x2 log(x+ 2022)

= 674



Equality holds when x = log(x+ 2022), which has a positive solution.

20. 18

The three given equations can be written as

3a+
2

b
= 12, 3b+

2

c
= 10, 3c+

2

a
= 8.

The product of all the three equations gives us

27abc+ 6

(
3a+

2

b

)
+ 6

(
3b+

2

c

)
+ 6

(
3c+

2

a

)
+

8

abc
= 120.

Plugging in the values and simplifying the equation gives us

27(abc)2 − 30abc+ 8 = 0.

This gives abc as either 4/9 or 2/3, so r + s+ t+ u = 4 + 9 + 2 + 3 = 18.

21. 793

There are 5 primes which are at most 12 – namely 2,3,5,7 and 11. Notice that if a number has
already been seen, we can effectively ignore all future occurrences of the number. Thus, the
desired probability is the fraction of the permutations of (1, 2, . . . , 12) such that the primes all
occur first. There are 5! ways to arrange the primes, and 7! ways to arrange the composites
to satisfy the condition. Since there are 12! possible permutations, the desired probability is
5!7!

12!
=

1

792
, and the required sum is 1 + 792 = 793.

22. 28

Extend PM to a point C such that PC ⊥ OC. Since ∠PMO = 120◦, ∠CMO = 60◦ and
∠COM = 30◦. Let PB = x and MC = a. Then CO = a

√
3 and OM = 2a. Moreover,

△PMB and △PCO are similar triangles. Thus, we have

2

2 + a
=

x

x+ 2

so x = 4/a.

Furthermore, by the Cosine Law on side PO of △PMO, we have

(x+ 2)2 = 4 + 4a2 + 2a

Plugging in x = 4/a and expanding, we have

16

a2
+

16

a
+ 4 = 4 + 4a2 + 4a

and so 4 + 4a = a4 + a3. Hence a3 = 4 and a = 3
√
4. Thus, x = 4/ 2

√
4.

It follows that the product of the lengths of the sides of the triangle is

(2a)(2)(x+ 2) = (2
3
√
4)(2)(2

3
√
2 + 2) = 16 + 8

3
√
4,

so a+ b+ c = 16 + 8 + 4 = 28.

23. 205

Let D be the foot of the A-altitude, E the midpoint of AC, and F the foot of the C-internal
angle bisector. Then by Ceva’s Theorem, we have AF

FB · BD
DC · CE

EA = 1, and so b
a · c cosB

b cosC = 1,
where we are using the shorthand BC = a,CA = b, AB = c. By cosine law, we know that
cosC = a2+b2−c2

2ab and cosB = c2+a2−b2

2ca . Substituting this into the equation, we obtain

a(a2 + b2 − c2) = b(c2 + a2 − b2)

Solving for c2 = AB2 in this equation then gives the final answer, which is 205.



24. 9912

The problem is equivalent to finding all values of n that satisfies the following congruence:

n2 − 2n− 23 + (−1)n ≡ 0 (mod 2477).

If n is odd, then (−1)n = −1. Then, we have:

n2 − 2n− 24 ≡ 0 (mod 2477)

(n− 6)(n+ 4) ≡ 0 (mod 2477).

This gives us solutions n ≡ 6 and n ≡ −4 (modulo 2477). Since 2477 is prime, these are the
only roots modulo 2477. This yields the solutions 6, 2483, 2473 and 4950. We only accept the
odd values, 2483 and 2473.

If n is even, then (−1)n = 1. Then, we have

n2− 2n− 22 ≡ 0 (mod 2477).

This gives n ≡ 1±
√
23 (mod 2477). Again, because 2477 is prime, these two are the only roots,

modulo 2477. Since 2477+23 = 2500 = 502, note that
√
23 ≡ 50 (mod 2477), which then gives

the solutions n ≡ 51 and n ≡ −49 (modulo 2477), yielding us the solutions 51, 2528, 2428 and
4905. We only accept the even values, 2528 and 2428.

Thus, the sum of all the solutions is 2483 + 2473 + 2528 + 2428 = 9912.

25. 2021

Fix m ≥ 2. First note that x, y ≥ m, and that M ≥ 2, implying
√

M(M + 1) ≥ 2. Thus,
f(x, y) ≤ 2 necessarily implies |x−m|+ |y −m| ≤ 1, and so |x−m|, |y −m| ≤ 1. This implies
x ∈ [m − 1,m + 1], and so x ∈ [m,m + 1]. Similarly, y ∈ [m,m + 1]. Now if x = m + 1, then
1 ≤ |x−m|+ |y−m| ≤ 2√

M(M+1)
< 1, contradiction. Using the same argument for y, it follows

that x, y ∈ [m,m+ 1). Thus, ⌊x⌋ = ⌊y⌋ = m always, and so M = m.

The inequality is then equivalent to |x − m| + |y − m| ≤ 2√
m(m+1)

. Let r ≤ 1 be the upper

bound in the inequality. Keeping in mind the fact that x, y ≥ m, this region is a right-triangle
with vertices (m,m), (m+ r,m) and (m,m+ r), which then has area r2

2 = 2
m(m+1) . This region

is within the set for 2 ≤ m ≤ 2021, so the desired sum is

2021∑
m=2

2

m(m+ 1)
= 2

2021∑
m=2

(
1

m
− 1

m+ 1

)
= 2

(
1

2
− 1

2022

)
=

1010

1011
.

It then follows that a+ b = 2021.



24th Philippine Mathematical Olympiad

National Stage (Day 1)

18 March 2022

Time: 4.5 hours Each item is worth 7 points.

1. Find all functions f : R → R such that

f(a− b)f(c− d) + f(a− d)f(b− c) ≤ (a− c)f(b− d)

for all real numbers a, b, c, and d.

2. The PMO Magician has a special party game. There are n chairs, labelled 1 to n. There are
n sheets of paper, labelled 1 to n.

� On each chair, she attaches exactly one sheet whose number does not match the number
on the chair.

� She then asks n party guests to sit on the chairs so that each chair has exactly one
occupant.

� Whenever she claps her hands, each guest looks at the number on the sheet attached to
their current chair, and moves to the chair labelled with that number.

Show that if 1 < m ≤ n, where m is not a prime power, it is always possible for the PMO
Magician to choose which sheet to attach to each chair so that everyone returns to their original
seats after exactly m claps.

3. Call a lattice point visible if the line segment connecting the point and the origin does not pass
through another lattice point. Given a positive integer k, denote by Sk the set of all visible
lattice points (x, y) such that x2 + y2 = k2. Let D denote the set of all positive divisors of
2021 · 2025. Compute the sum

∑
d∈D

|Sd|.

Here, a lattice point is a point (x, y) on the plane where both x and y are integers, and |A|
denotes the number of elements of the set A.

4. Let △ABC have incenter I and centroid G. Suppose that PA is the foot of the perpendicular
from C to the exterior angle bisector of B, and QA is the foot of the perpendicular from B to
the exterior angle bisector of C. Define PB, PC , QB, and QC similarly. Show that PA, PB,
PC , QA, QB, and QC lie on a circle whose center is on line IG.



24th Philippine Mathematical Olympiad

National Stage (Day 2)

19 March 2022

Time: 4.5 hours Each item is worth 7 points.

5. Find all positive integers n for which there exists a set of exactly n distinct
positive integers, none of which exceed n2, whose reciprocals add up to 1.

6. In△ABC, letD be the point on side BC such that AB+BD = DC+CA.
The line AD intersects the circumcircle of △ABC again at point X ̸= A.
Prove that one of the common tangents of the circumcircles of △BDX
and △CDX is parallel to BC.

7. Let a, b, and c be positive real numbers such that ab+ bc+ ca = 3. Show
that

bc

1 + a4
+

ca

1 + b4
+

ab

1 + c4
≥ 3

2
.

8. The set S = {1, 2, . . . , 2022} is to be partitioned into n disjoint subsets
S1, S2, . . . , Sn such that for each i ∈ {1, 2, . . . , n}, exactly one of the fol-
lowing statements is true:

(a) For all x, y ∈ Si with x ̸= y, gcd(x, y) > 1.

(b) For all x, y ∈ Si with x ̸= y, gcd(x, y) = 1.

Find the smallest value of n for which this is possible.



24th Philippine Mathematical Olympiad

National Stage (Solutions)

18-19 March 2022

1. Find all functions f : R → R such that

f(a− b)f(c− d) + f(a− d)f(b− c) ≤ (a− c)f(b− d)

for all real numbers a, b, c, and d.

Solution. We claim that the only solutions are f(x) = 0 and f(x) = x. It is easy to see
that both satisfy the functional inequality. We now show that no other functions satisfy
the given condition.

Letting a = b = c = d yields 2f(0)2 ≤ 0 which implies f(0) = 0. Now, suppose that
f ̸≡ 0. Then we can find p ∈ R such that f(p) ̸= 0. For a ∈ R, let b = a, c = 0, and
d = a− p. We then have

f(p)f(a) ≤ af(p).

Case 1: Suppose f(p) > 0. Then f(a) ≤ a for all a ∈ R. In particular f(−1) < 0. In
the original functional equation, letting b = a, c = 0, and d = a+ 1 yields f(−1)f(a) ≤
af(−1) for all a ∈ R. Hence, f(a) ≥ a for all a ∈ R. Thus for this case, f(x) = x for all
x ∈ R.

Case 2: Suppose f(p) < 0. Then f(a) ≥ a for all a ∈ R. In particular f(1) > 0. In the
original functional equation, letting b = a, c = 0, and d = a− 1 yields f(1)f(a) ≤ af(1)
for all a ∈ R. Hence, f(a) ≤ a for all a ∈ R. Thus for this case, f(x) = x for all x ∈ R.

2

2. The PMO Magician has a special party game. There are n chairs, labelled 1 to n. There
are n sheets of paper, labelled 1 to n.

� On each chair, she attaches exactly one sheet whose number does not match the
number on the chair.

� She then asks n party guests to sit on the chairs so that each chair has exactly one
occupant.

� Whenever she claps her hands, each guest looks at the number on the sheet attached
to their current chair, and moves to the chair labelled with that number.

Show that if 1 < m ≤ n, where m is not a prime power, it is always possible for the
PMO Magician to choose which sheet to attach to each chair so that everyone returns
to their original seats after exactly m claps.

Solution. Decompose the permutation into cycles of lengths c1, c2, c3, . . . , ck. Note that
c1 + c2 + · · ·+ ck = n. A guest in a cycle of length c returns to their original seat after
c claps. Thus, all guests return to their original seats after lcm{ci} claps.



Let m = pq, where p and q are coprime and both greater than 1; if m > 1 is not a
prime power, then it has at least two different prime factors, so this is always possible.
Suppose we have at least one cycle of lengths p and q, and all cycles are of lengths p or
q. Then, all guests will return to their original seats after lcm{p, q} = m claps.

Ifm = n, we can just connect all n party guests in one big cycle of sizem = n. Otherwise,
m < n, and note that the problem is equivalent to finding a nonnegative integer solution
to px+ qy = n− p− q. Since m < n, a solution always exists by the Chicken McNugget
Theorem, completing the proof. 2

3. Call a lattice point visible if the line segment connecting the point and the origin does
not pass through another lattice point. Given a positive integer k, denote by Sk the set
of all visible lattice points (x, y) such that x2 + y2 = k2. Let D denote the set of all
positive divisors of 2021 · 2025. Compute the sum∑

d∈D

|Sd|.

Here, a lattice point is a point (x, y) on the plane where both x and y are integers, and
|A| denotes the number of elements of the set A.

Solution. We claim that the required sum is 20.

Let Tk denote the set of all lattice points in the circle x2 + y2 = k2. We claim that∑
d|k |Sd| = |Tk|. Indeed, given a point (x, y) in Tk, let g = gcd(x, y). Then x/g, y/g are

necessarily coprime, and hence (x/g, y/g) visible, and (x/g)2 + (y/g)2 = (k/g)2. This
implies (x/g, y/g) ∈

⋃
d|k Sd. Next, note that the Sd’s are necessarily disjoint. Now

if (x′, y′) is a visible lattice point in Sd where d|k, then we can write k = gd so that
(x, y) = (gx′, gy′) is a lattice point in Tk. This establishes a bijection between

⋃
d|k Sd

and Tk, and since the Sd’s are disjoint, the claim follows.

From the claim, it suffices to find the number of lattice points in the circle x2 + y2 =
(2021 · 2025)2. This is equivalent to

x2 + y2 = 38 · 54 · 432 · 472.

Now it is well-known that if x2 + y2 ≡ 0 (mod p) where p ≡ 3 (mod 4) is a prime,
then x ≡ y ≡ 0 (mod p). Thus, we must also have x, y ≡ 0 (mod 34 · 43 · 47). It then
follows that the number of lattice points is the same as the number of lattice points in
x2 + y2 = 252.

If x = 0 or y = 0, there are 4 solutions. Otherwise, assume WLOG that they are
both positive. Now it is well-known that all solutions to x2 + y2 = z2 are in the form
x = g(m2 − n2), y = 2gmn, and z = g(m2 + n2), where m > n are coprime positive
integers, and g is a positive integer. Thus, we want g(m2 + n2) = 25. Note that g|25, so
g = 1, 5, 25.

If g = 25, then m2 + n2 = 1, so n = 0, contradiction. If g = 5, then m2 + n2 = 5,
which yields m = 2 and n = 1 and thus g(m2 − n2) = 15 and 2gmn = 20, so (x, y) =
(15, 20), (20, 15). If g = 1, then we get m2 + n2 = 25, from which we obtain m = 4 and
n = 3. It then follows that (x, y) = (24, 7), (7, 24), and so we have 2 solutions when x, y
are both positive. This implies that there are 4 · 4 = 16 solutions when x, y are nonzero,
and so there are 4 + 16 = 20 solutions in total. 2



4. Let △ABC have incenter I and centroid G. Suppose that PA is the foot of the perpen-
dicular from C to the exterior angle bisector of B, and QA is the foot of the perpendicular
from B to the exterior angle bisector of C. Define PB, PC , QB, and QC similarly. Show
that PA, PB, PC , QA, QB, and QC lie on a circle whose center is on line IG.

Solution. Refer to the figure shown below:

Let MA,MB, and MC be the midpoints of BC,CA, and AB respectively.

First, it may be shown that PB and QC lie on MBMC .

Note that ∠AMCQC = 2∠ABQC = 180◦ − ∠ABC = ∠BMCMB. Thus, QC lies on
MBMC . Likewise, AMBPB = 2∠ACPB = 180◦ − ∠ACB = ∠CMBMC . Thus, PB also
lies on MBMC .

Similarly, PC and QA lie on MCMA, and PA and QB lie on MAMB.

Now, as MA is the center of the circle passing through B,C,QA, and PA, then MAPA =
MAQA, so the angle bisector of ∠MCMAMB coincides with the perpendicular bisector
of PAQA.

Observe that MCQA = MCMA+MAQA = CA
2
+ BC

2
= MBPB +MCMB = MCPB. Thus,

the perpendicular bisector of QAPB coincides with the angle bisector of ∠MBMCMA.

Using similar observations, it may then be concluded that the perpendicular bisec-
tors of PAQA, QAPB, PBQB, QBPC , PCQC , and QCPA all concur at the incenter of
△MAMBMC . Thus, the latter must also be the center of the circle containing all six
points. As the medial triangle is the image of a homothety on △ABC with center G
having a scale factor of −0.5, then the incenter of △MAMBMC must lie on IG. 2

5. Find all positive integers n for which there exists a set of exactly n distinct positive
integers, none of which exceed n2, whose reciprocals add up to 1.

Solution. The answer is all n ̸= 2. For n = 1, the set {1} works. For n = 2, no set exists,
simply because the sum of reciprocals of two distinct integers cannot be equal to 1. For
n = 3, take {2, 3, 6}.
For n > 3, the identity

1

k
=

1

k + r
+

1

k(k + 1)
+

1

(k + 1)(k + 2)
+ · · ·+ 1

(k + r − 1)(k + r)



allows us to extend a sum of t terms to one of exactly t + r terms. Taking k = 3 and
r = n− 3 allows us to turn the sum 1 = 1/2 + 1/3 + 1/6 to the n-term sum

1 =
1

2
+

1

6
+

1

n
+

1

3 · 4
+

1

4 · 5
+ · · ·+ 1

(n− 1)n
.

This construction works provided that n ̸= k(k+1) for any k. Otherwise, we have n ≥ 6,
and instead we apply the above to the sum 1 = 1/2 + 1/3 + 1/10 + 1/15, taking k = 3,
r = n− 4 to yield

1 =
1

2
+

1

10
+

1

15
+

1

n− 1
+

1

3 · 4
+

1

4 · 5
+ · · ·+ 1

(n− 2)(n− 1)
.

The above then works, because if n = k(k + 1) for some k, then n − 1 ̸= 2, 10, 15, and
n− 1 ̸= m(m+ 1) for any m by parity, since n− 1 is odd and m(m+ 1) is always even.

This construction is not unique; there are other similar ones. 2

6. In △ABC, let D be the point on side BC such that AB + BD = DC + CA. The line
AD intersects the circumcircle of △ABC again at point X ̸= A. Prove that one of the
common tangents of the circumcircles of △BDX and △CDX is parallel to BC.

Solution. Refer to the figure shown below:

Let V and W be the midpoints of arcs BD and CD respectively. We claim that VW is
the desired common tangent. To prove this, let E and F be the orthogonal projections
of V and W onto BC. Note that E and F are the midpoints of BD and CD respectively.
Now we claim that V E = WF . To see this, note that

V E = BV sin∠V BE

=
BX sin∠BXV

sin∠BDX
sin

∠BXD

2

=
BX sin ∠BXA

2

sin∠BDX
sin

C

2

=
BX

sin∠BDX
sin2 C

2
.



Similarly, we can prove that WF = CX
sin∠CDX

sin2 B
2
. Thus, to prove the claim, it suffices

to prove that
BX

CX
=

sin2 B
2

sin2 C
2

. This is because

BX

CX
=

sin∠BAD

sin∠CAD
=

c/BD

b/CD
=

c(s− c)

b(s− b)
=

sin2 B
2

sin2 C
2

.

This proves the first claim.

Next, we claim that VW is the desired common tangent. Note that from the first claim,
VWFE is a rectangle, since ∠V EF and ∠WFE are both right angles. Let O1 and O2

be the circumcenters of triangles BDX and CDX respectively. Then O1V ⊥ EF , so
since EF ||VW we get O1V ⊥ VW . Likewise, O2W ⊥ VW as well, which proves the
second claim.

It then follows that VW is the desired common tangent parallel to BC, and the required
conclusion follows. 2

7. Let a, b, and c be positive real numbers such that ab+ bc+ ca = 3. Show that

bc

1 + a4
+

ca

1 + b4
+

ab

1 + c4
≥ 3

2
.

Solution. It can be shown that
1

1 + a4
≥ 2− a2

2
.

Indeed, simplifying yields

2 ≥ (1 + a4)(2− a2)

(a4 + 1)(a2 − 2) + 2 ≥ 0

a6 − 2a4 + a2 − 2 + 2 ≥ 0

a6 − 2a4 + a2 ≥ 0

a2(a4 − 2a2 + 1) ≥ 0

a2(a2 − 1)2 ≥ 0

which is true.

Thus

1

1 + a4
≥ 2− a2

2
bc

1 + a4
≥ 2bc− a2bc

2
.

Similarly
ca

1 + b4
≥ 2ca− ab2c

2
, and

ab

1 + c4
≥ 2ab− abc2

2
.



Adding these up yields

bc

1 + a4
+

ca

1 + b4
+

ab

1 + c4
≥ (bc+ ca+ ab)− a2bc+ ab2c+ abc2

2
.

Observe that
(ab+ bc+ ca)2 ≥ 3((ab)(bc) + (bc)(ca) + (ca)(ab))

9 ≥ 3(a2bc+ ab2c+ abc2)

3 ≥ a2bc+ ab2c+ abc2.

Thus,

(bc+ ca+ ab)− a2bc+ ab2c+ abc2

2
≥ 3− 3

2
=

3

2
.

Therefore,
bc

1 + a4
+

ca

1 + b4
+

ab

1 + c4
≥ 3

2
.

2

8. The set S = {1, 2, . . . , 2022} is to be partitioned into n disjoint subsets S1, S2, . . . , Sn

such that for each i ∈ {1, 2, . . . , n}, exactly one of the following statements is true:

(a) For all x, y ∈ Si with x ̸= y, gcd(x, y) > 1.

(b) For all x, y ∈ Si with x ̸= y, gcd(x, y) = 1.

Find the smallest value of n for which this is possible.

Solution. The answer is 15.

Note that there are 14 primes at most
√
2022, starting with 2 and ending with 43. Thus,

the following partition works for 15 sets. Let S1 = {2, 4, . . . , 2022}, the multiples of 2
in S. Let S2 = {3, 9, 15 . . . , 2019}, the remaining multiples of 3 in S not in S1. Let
S3 = {5, 25, 35, . . . , 2015} the remaining multiples of 5, and so on and so forth, until
we get to S14 = {43, 1849, 2021}. S15 consists of the remaining elements, i.e. 1 and
those numbers with no prime factors at most 43, i.e., the primes greater than 43 but
less than 2022: S15 = {1, 47, 53, 59, . . . , 2017}. Each of S1, S2, . . . , S14 satisfies i., while
S15 satisfies ii.

We show now that no partition in 14 subsets is possible. Let a Type 1 subset of S be a
subset Si for which i. is true and there exists an integer d > 1 for which d divides every
element of Si. Let a Type 2 subset of S be a subset Si for which ii. is true. Finally,
let a Type 3 subset of S be a subset Si for which i. is true that is not a Type 1 subset.
An example of a Type 3 subset would be a set of the form {pq, qr, pr} where p, q, r are
distinct primes.

Claim: Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of prime numbers, where pk is the
kth prime. Every optimal partition of the set S(k) := {1, 2, . . . , p2k}, i.e., a partition with
the least possible number of subsets, has at least k − 1 Type 1 subsets. In particular,
every optimal partition of this set has k+1 subsets in total. To see how this follows, we
look at two cases:



� If every prime p ≤ pk has a corresponding Type 1 subset containing its multiples,
then a similar partitioning to the above works: Take S1 to Sk as Type 1 subsets for
each prime, and take Sk+1 to be everything left over. Sk+1 will never be empty, as
it has 1 in it. While in fact it is known that, for example, by Bertrand’s postulate
there is always some prime between pk and p2k so Sk+1 has at least two elements,
there is no need to go this far–if there were no other primes you could just move
2 from S1 into Sk+1, and if k > 1 then S1 will still have at least three elements
remaining. And if k = 1, there is no need to worry about this, because 2 < 3 < 22.

� On the other hand, if p ≤ pk has no corresponding Type 1 subset, then p and p2

will not be contained in a Type 1 set. Neither can p nor p2 be contained in a Type
3 set. If gcd(p, x) > 1 for all x in the same set as p, then gcd(p, x) = p, which
implies that p is in a Type 1 set with d = p. Similarly, if gcd(p2, x) > 1 for all x in
the same set as p2, then p | gcd(p2, x) for all x, and so p2 is in a Type 1 set with
d = p as well. Hence p and p2 must in fact be in Type 2 sets, and they cannot be in
the same Type 2 set (as they share a common factor of p > 1); this means that the
optimal partition has at least k + 1 subsets in total. A possible equality scenario
for example is the sets S1 = {1, 2, 3, 5, . . . , pk}, S2 = {4, 9, 25, . . . , p2k}, and S3 to
Sk+1 Type 1 sets taking all remaining multiples of 2, 3, 5, . . . , pk−1. This works, as
pk and p2k are the only multiples of pk in S(k) with no prime factor other than pk
and thus cannot be classified into some other Type 1 set.

To prove our claim: We proceed by induction on k. Trivially, this is true for k = 1.
Suppose now that any optimal partition of the set S(k) has at least k−1 Type 1 subsets,
and thus at least k + 1 subsets in total. Consider now a partition of the set S(k + 1),
and suppose that this partition would have at most k + 1 subsets. From the above,
there exist at least two primes p, q with p < q ≤ pk+1 for which there are no Type 1
subsets. If q < pk+1 we have a contradiction. Any such partition can be restricted to
an optimal partition of S(k) with p < q ≤ pk having no corresponding Type 1 subsets.
This contradicts our inductive hypothesis. On the other hand, suppose that q = pk+1.
Again restricting to S(k) gives us an optimal partition of S(k) with at most k− 1 Type
1 sets; the inductive hypothesis tells us that this partition has in fact exactly k−1 Type
1 sets and two Type 2 sets from a previous argument establishing the consequence of
the claim. However, consider now the element pq. This cannot belong in any Type 1
set, neither can it belong in the same Type 2 set as p or p2. Thus in addition to the
given k− 1 Type 1 sets and 2 Type 2 sets, we need an extra set to contain pq. Thus our
partition of S(k + 1) in fact has at least k − 1 + 2 + 1 = k + 2 subsets, and not k + 1
subsets as we wanted. The claim is thus proved.

Returning to our original problem, since p14 = 43 <
√
2022, any partition of S must

restrict to a partition of S(14), which we showed must have at least 15 sets. Thus, we
can do no better than 15. 2






















