
26th Philippine Mathematical Olympiad

National Stage (Day 1)

17 February 2024

Time: 4.5 hours Each item is worth 7 points.

1. Let f : Z2 → Z be a function satisfying

f(x+ 1, y) + f(x, y + 1) + 1 = f(x, y) + f(x+ 1, y + 1)

for all integers x and y. Can it happen that |f(x, y)| ≤ 2024 for all
x, y ∈ Z?

2. Let 0!! = 1!! = 1 and n!! = n · (n − 2)!! for all integers n ≥ 2. Find all
positive integers n such that

(2n + 1)!!− 1

2n+1

is a positive integer.

3. Given triangle ABC with orthocenterH, the lines through points B and C

that are perpendicular to lines AB and AC respectively, intersect line AH
at points X and Y respectively. The circle with diameter XY intersects
lines BX and CY a second time at points K and L respectively. Prove
that points H,K, and L are collinear.

4. Let n be a positive integer. For any S ⊆ {1, 2, · · · , n}, let f(S) be the
set containing all positive integers at most n that have an odd number of
factors in S. How many subsets of {1, 2, · · · , n} can be turned into {1}
after finitely many (possibly zero) applications of f?



26th Philippine Mathematical Olympiad

National Stage (Day 2)

18 February 2024

Time: 4.5 hours Each item is worth 7 points.

5. Find the largest positive integer k so that any binary string of length 2024
contains a palindromic substring of length at least k.

6. For a real number x, let ⌊x⌋ be the greatest integer not exceeding x. The
sequence {an}n≥1 of real numbers is defined as follows:

a1 = 1, and an+1 =
1

2⌊an⌋ − an + 1
for all n ≥ 1.

Find, with proof, the value of a2024.

7. Let ABC be an acute triangle with orthocenter H, circumcenter O, and
circumcircle Ω. Points E and F are the feet of the altitudes from B to AC
and C to AB, respectively. Let line AH intersect Ω again at point D ̸= A.
The circumcircle of DEF intersects Ω again at X, and AX intersects BC

at I. The circumcircle of triangle IEF intersects BC again at G. If M
is the midpoint of BC, prove that lines MX and OG intersect at a point
on Ω.

8. Let φ(n) denote the number of positive integersm ≤ n satisfying gcd(m,n) =
1. Find all positive integers n for which φ(φ(n)) divides n.



Solutions to the 26th Philippine Mathematical Olympiad

1. Let f : Z2 → Z be a function satisfying

f(x+ 1, y) + f(x, y + 1) + 1 = f(x, y) + f(x+ 1, y + 1)

for all integers x and y. Can it happen that |f(x, y)| ≤ 2024 for all x, y ∈ Z?

Solution. We prove by contradiction; suppose that |f(x, y)| ≤ 2024 is true.

Claim: f(x, y) = f(x, 0) + f(0, y)− f(0, 0) + xy for all integers x, y.

Proof: We induct on |x+ y|. The base cases are |x+ y| = 0 or |x+ y| = 1, where clearly
the equation is true because either x = 0 or y = 0 (as all terms but one in the RHS
cancel out). For the inductive step, suppose x, y > 0 (the other cases work similarly).
Then we have

f(x, y) =f(x− 1, y) + f(x, y − 1)− f(x− 1, y − 1) + 1

=(f(x− 1, 0) + f(0, y)− f(0, 0) + (x− 1)(y))

+ (f(x, 0) + f(0, y − 1)− f(0, 0) + (x)(y − 1))

− (f(x− 1, 0) + f(0, y − 1)− f(0, 0) + (x− 1)(y − 1)) + 1

=f(x, 0) + f(0, y)− f(0, 0) + xy

as desired.

Now, let x = y = M for some positive integer M . We now have

f(M,M) = f(M, 0) + f(0,M)− f(0, 0) +M2

=⇒ f(M,M)− f(M, 0)− f(0,M) = M2 − f(0, 0)

=⇒ |f(M,M)− f(M, 0)− f(0,M)| = M2 − f(0, 0)

by taking M large enough so the RHS becomes positive. In fact, because squares are
unbounded above, we can always choose a large enough M so that M2− f(0, 0) > 6072.
But then by the triangle inequality

|f(M,M)− f(M, 0)− f(0,M)| ≤ |2024|+ |2024|+ |2024| = 6072,

which is a contradiction. ■



2. Let 0!! = 1!! = 1 and n!! = n · (n− 2)!! for all integers n ≥ 2. Find all positive integers
n such that

(2n + 1)!!− 1

2n+1

is a positive integer.

Solution. We claim that all integers n ≥ 3 work.

Note that n = 1 and n = 2 give us
(2n + 1)!!− 1

2n+1
=

1

2
and

(2n + 1)!!− 1

2n+1
=

7

4
respec-

tively, which are not integers. So n ≥ 3.

We claim that all n ≥ 3 work. Note that 2n−2 is an even integer. Also, note that
52

n−1
= (1 + 4)2

n−1 ≡ 1 (mod 2n+1), so the order of 5 (mod 2n+1) must divide 2n−1.
We see that 52

n−2
= (1 + 4)2

n−2 ≡ 1 + 2n (mod 2n+1), so 2n−1 must be the order of 5
(mod 2n+1).

Hence, {1, 5, 52, . . . , 52n−1−1} ≡ {1, 5, 9, 13, . . . , 2n+1 − 3} (mod 2n+1). Then

2n−1−1∏
k=0

(4k + 1) ≡
2n−1−1∏
k=0

5k = 52
n−2(2n−1−1) ≡ (1 + 2n)2

n−1−1 ≡ 1 + 2n (mod 2n+1).

Thus,

(2n + 1)!! =
2n−2∏
k=0

(4k + 1)×
2n−2−1∏
k=0

(4k + 3) =
2n−2∏
k=0

(4k + 1)×
2n−1−1∏
k=2n−2

(2n+1 − (4k + 1))

≡ (−1)2
n−2

(2n + 1)
2n−1−1∏
k=0

(4k + 1) ≡ (2n + 1)2 ≡ 1 (mod 2n+1).

Hence,
(2n + 1)!!− 1

2n+1
is an integer for all n ≥ 3. Therefore, the answer is all integers

n ≥ 3. ■



3. Given triangle ABC with orthocenter H, the lines through points B and C that are
perpendicular to lines AB and AC respectively, intersect line AH at points X and Y
respectively. The circle with diameter XY intersects lines BX and CY a second time
at points K and L respectively. Prove that points H,K, and L are collinear.

Solution. We use directed angles (mod 180◦). Let D be the second intersection of line
AH and the circumcircle of triangle ABC, and let E be the intersection of lines BX
and CY . Since AB ⊥ BE and AC ⊥ CE, E must be the antipode of A with respect
to triangle ABC, so ∡EDA = 90◦. Hence, ∡EDY = ∡EDA = 90◦ and ∡EKY =
∡XKY = 90◦, implying EKDY is cyclic. Similarly, we get ∡XDE = ∡XLE = 90◦, so
ELDX is cyclic.

Since lines BH and CY are perpendicular to line AC, we have BH ∥ CY . Simi-
larly, lines CH and BX are perpendicular to line AB, so we have CH ∥ BX. Then
∡BHD = ∡BHY = ∡EYH = ∡EYD = ∡EKD = ∡BKD, so BHKD is cyclic.
Similarly, ∡CLD = ∡ELD = ∡EXD = ∡CHD, so CHDL is also cyclic.

Then ∡KHD = ∡KBD = ∡EBD = ∡ECD = ∡LCD = ∡LHD, which implies H,K,
and L are collinear. ■



4. Let n be a positive integer. For any S ⊆ {1, 2, · · · , n}, let f(S) be the set containing all
positive integers at most n that have an odd number of factors in S. How many subsets
of {1, 2, · · · , n} can be turned into {1} after finitely many (possibly zero) applications
of f?

Solution. The answer is 2⌈log2(log2(n+1))⌉. To show this, we first have a lemma:

Lemma. f is a bijection.

Proof of Lemma: We instead show that f is surjective on the power set P({1, 2, · · · , n});
since this is also the domain and range of f is , this shows that f−1 exists and is well-
defined, i.e. f is a bijection. 2

Let S ′ be a target set; we wish to show a set S exists so that only those integers in S ′

have an odd number of factors in S.
Initially define S = ∅. For each integer 1 ≤ i ≤ n, in order, we do the following:

If i ∈ S ′ and there are an even number of factors of i in S, or if i /∈ S ′ and
there are an odd number of factors of i in S, we add i to S. Otherwise, do
nothing.

Notice that this makes it so that the number of factors of i in S is of the right parity, but
importantly, it does not affect the number of factors for any number less than S. Thus,
repeating this process for all i in increasing order, we can create the set S as defined
above. 2

Because the subsets of {1, 2, · · · , n} then form ”cycles”, it suffices to find the least
positive integer x such that fx({1}) = {1}.
Define the function g(S) on multisets of positive integers from 1 to n as follows: for each
k ∈ S, we put every multiple of k at most n in the set g(S). So for example, if n = 7
and S = {1, 2, 5, 6} we have

g(S) = {1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 6, 7}.

Notice that the number of times an element appears in g(S) is the same as the number of
its divisors in S. This means that the parity of the number of times an element appears
is the same after applying either f or g; the number of times some k appears in gx({1})
is the number of sequences d1, d2, · · · , dx+1 such that d1 = 1, dx+1 = k, and di | di+1 for
all 1 ≤ i ≤ x. Let this number be c(x, k).

Let b(x, k) denote the number of sequences a0, a1, a2, · · · , ax with a0 = 0, ax = k, and
a0 ≤ a1 ≤ · · · ≤ ak. Notice that the exponents in the prime factorizations of the sequence
d match with the possible sequences a. However, b(x, k) has a closed form

(
x+k−1

k

)
by

stars-and-bars.

Thus, letting x = pe11 pe22 · · · pett be the prime factorization, we have

c(x, k) =
t∏

i=1

b(x, k) =
t∏

i=1

(
x+ k − 1

k

)
.

Claim: The period of the parity of
(
x
k

)
as x goes up is the smallest power of 2 greater

than k.

Proof of Claim: Note that the set of odd numbers in the Pascal triangle form a Sierpinski
triangle:



The period of the parity is the same as the period of the blue/white pattern going down
and right a diagonal. This is the size of the length of the smallest ”big triangle” that
contains row k, which is the smallest power of 2 greater than k. 2

Because c(x, k) is a product of a bunch of binomial coefficients, the period of the parity
of c(x, k) is the LCM of the periods of the parities of the binomial coefficients, and since
they’re all powers of two, it reduces to the largest one. That means that the period of
f when starting at {1} is after the largest of all the periods of

(
x
k

)
, as k ranges over the

exponents of the primes in the prime factorizations of integers from 1 to n. This is just
the smallest power of 2 greater than log2 n, which is 2⌈log2(log2(n+1))⌉. ■

Remark: The answer for n is given by a(n) in the OEIS sequence A063511.

Remark: This problem shares a similarity with the following puzzle:

There are 100 lockers, numbered from 1 to 100. We first open every locker,
then every second locker, then every third locker, and so on. Which lockers
are left open?

In particular, this problem asks for f({1, 2, · · · , 100}). For a set S, if we only open every
kth locker if k ∈ S, the set of open lockers gives f(S). The proof that f is surjective
can be phrased like this: if we have a ”goal” state of lockers, we can go from k = 1 to
k = 100, choosing to open every kth locker only if the locker does not match our current
goal.

However, knowing this does not help with finding the subsets associated with {1}.
Remark: It is possible to finish the second part (finding the period of [ν2

((
n
k

))
== 0]

with k constant) by appealing to Lucas’s theorem. Indeed, the period is just the smallest
power of two greater than k, which is true because the last ⌊log2 k⌋ digits in the binary
rep of n repeat after that many increments.

https://oeis.org/A063511
https://en.wikipedia.org/wiki/Lucas%27s_theorem


5. Find the largest positive integer k so that any binary string of length 2024 contains a
palindromic substring of length at least k.

Solution. The answer is 4.

Lower bound: Consider any 4 digits sufficiently far from either side. If no two consecutive
digits are equal, then a palindrome is formed. Otherwise, we have a substring of the
form ?00? or ?11? (WLOG the first one). If both of the ?s are equal, then we are done.
Otherwise, we have a substring of the form ?0001?. If the first digit is a 0, then the first
four digits form a palindrome. Otherwise, the first five digits form a palindrome. Either
way, we have found a palindrome with at least 4 digits.

Upper bound: Consider the string 110100110100110100 · · · of cycle 6 ad infinitum. It
can be checked that none of the 5-substrings

11010, 10100, 01001, 10011, 00110, 01101

or the 6-substrings

110100, 101001, 010011, 100110, 001101, 011010

are palindromes. This means that no higher length palindromes exist either, because
removing an equal amount from either side should give one of these substrings. ■

Remark: We can replace 2024 with any positive integer n. The maximum guaranteed
length of a palindromic substring is 1 for [1, 2], 2 for [3, 4], 3 for [5, 8] (consider the string
11101000), and 4 for n ≥ 9.



6. For a real number x, let ⌊x⌋ be the greatest integer not exceeding x. The sequence
{an}n≥1 of real numbers is defined as follows:

a1 = 1, and an+1 =
1

2⌊an⌋ − an + 1
for all n ≥ 1.

Find, with proof, the value of a2024.

Solution.

First, note that if ak > 0 for some integer k ≥ 1, then

ak+1 =
1

2⌊ak⌋ − ak + 1
>

1

2(ak + 1)− ak + 1
=

1

ak + 3
> 0.

Hence, an is positive for all integers n ≥ 1.

We claim that for all n ≥ 2, an = an−1
2

+ 1 if n is odd, and an =
an/2

an/2+1
if n is even. We

prove this by strong induction.

For the base case n = 2, note that a2 = 1
2⌊a1⌋−a1+1

= 1
2
= a1

a1+1
, so the claim holds for

this case.

Now, assume the claim holds for n = 1, 2, . . . , k for some integer k ≥ 2. Then we will
show the claim must hold for n = k + 1.

If k is even, then k = 2ℓ for some integer ℓ ≥ 1, and ak =
aℓ

aℓ+1
. We have

ak+1 =
1

2⌊ak⌋ − ak + 1
=

1

2
⌊

aℓ
aℓ+1

⌋
− aℓ

aℓ+1
+ 1

= aℓ + 1 = a (k+1)−1
2

+ 1,

so the claim holds for n = k + 1 in this case.

If k is odd, then k = 2ℓ− 1 for some integer ℓ ≥ 2, and ak = aℓ−1 + 1. We have

ak+1 =
1

2⌊ak⌋ − ak + 1
=

1

2⌊aℓ−1⌋ − aℓ−1 + 2
=

1
2⌊aℓ−1⌋−aℓ−1+1

1
2⌊aℓ−1⌋−aℓ−1+1

+ 1
=

aℓ
aℓ + 1

=
a(k+1)/2

a(k+1)/2 + 1
,

so the claim holds for n = k + 1 in this case.

Therefore, the claim is proved for all integers n ≥ 2. Note that 2024 = 1111110100002,
so

a3 = 2, a7 = 3, a15 = 4, a31 = 5, a63 = 6, a126 =
6

7
, a253 =

13

7
, a506 =

13

20
, a1012 =

13

33
,

and lastly, a2024 =
13

46
. ■



7. Let ABC be an acute triangle with orthocenter H, circumcenter O, and circumcircle Ω.
Points E and F are the feet of the altitudes from B to AC and C to AB, respectively.
Let line AH intersect Ω again at point D ̸= A. The circumcircle of DEF intersects Ω
again at X, and AX intersects BC at I. The circumcircle of triangle IEF intersects
BC again at G. If M is the midpoint of BC, prove that lines MX and OG intersect at
a point on Ω.

Solution. Let the line through A parallel to BC intersect Ω again at A′. We claim that
A′ is the desired intersection point.

By radical axis on the circumcircles of ABC, BCEF , DEF , it follows that lines
EF,BC,DX concur at some point P . Then by power of a point, we have

PI · PG = PE · PF = PB · PC = PD · PX,

so I,G,D,X are concyclic. Now taking perspectivity at D, it follows that

(A,X;B,C)
D
= (XD ∩BC,AD ∩BC;B,C) = (EF ∩BC,AD ∩BC;B,C) = −1,

so ABXC is harmonic. Now we show that points X,M,A′ are collinear. Let M ′ =
AA′ ∩BC, and we will show that M ′ = M . Note that

(B,C;M ′, PBC
∞ )

X
= (B,C;A′, X ′) = (C,B;A,X) = −1,

where X ′ is the reflection of X about OM , and the second step follows from the fact
that cross-ratio is preserved under reflecting with respect to OM . It then follows that
M ′ = M , so XMA′ is a line.

Next, we show that OGA′ is a line. We will prove the stronger statement that D,G,O,A′

are collinear. It is clear that D,O,A′ are collinear, so it suffices to prove that D,G,A′

are collinear. This is because

∠A′DX = ∠XDC + ∠CDA′ = ∠XAC + ∠ACI = ∠XIC = ∠GDX,



so OG ∩MX = A′ ∈ Ω, as desired. ■

Remark: It is possible to prove that XMA′ is a line without using projective geometry.
To do this, let D′ be the foot of the altitude from A to BC. By sine law, we have

BA

BX

/CA

CX
=

sin∠ADB

sin∠BDX

/ sin∠ADC

sin∠CDX

=
sin∠D′DB

sin∠BDP

/sin∠D′DC

sin∠CDP

=
D′B

D′C

/PB

PC
= 1,

so BX · CA = CX · BA, implying AX is the A-symmedian. In particular, if X ′ is the
reflection of X about the perpendicular bisector of BC, AMX ′ is a line. Reflecting this
line across the same perpendicular bisector yields A′MX is a line, as desired.



8. Let φ(n) denote the number of positive integers m ≤ n satisfying gcd(m,n) = 1. Find
all positive integers n for which φ(φ(n)) divides n.

Solution. The answer is n = 1, n = 3, n = 2a, n = 2a3b, n = 2ap for p ∈ {5, 7} and
a, b ≥ 1. It is easy to verify that for each of these values of n, φ(φ(n)) indeed divides n.
We have

n φ(φ(n))
1, 2, 3 1

2a, a ≥ 2 2a−2

2a3 2a−1

2a3b, b ≥ 2 2a3b−2

2ap, p ∈ {5, 7} 2a

It remains to show that these are the only ones.

First, we show that if n > 3, we must have n even. Instrumental is the following lemma:

Lemma 1: If n has k distinct odd prime factors, then v2(φ(n)) ≥ v2(n) + k − 1 ≥
v2(n)−1, where v2(n) denotes the power of 2 in the prime factorization of n. In particular,
if n is not a power of 2, then v2(φ(n)) ≥ v2(n).

Proof of Lemma 1: Write n = 2am for some odd m, so that v2(n) = a. We have
φ(n) = φ(m) if a = 0 (i.e. n is odd) or φ(n) = 2a−1φ(m) otherwise. Then we have
that for each odd prime p | m, 2 | p − 1 | φ(m); this means that v2(φ(m)) ≥ k. Hence
v2(φ(n)) ≥ a− 1 + v2(φ(m)) ≥ a− k − 1 as desired. 2

We now use Lemma 1 to prove our claim. Suppose n > 3 is odd. Then either n is
divisible by at least two distinct primes or is a power of some odd prime. However, if
n is divisible by at least two odd primes, say, p, q, then 4 | (p − 1)(q − 1) | φ(n), i.e.,
v2(φ(n)) ≥ 2. Then from our lemma v2(φ(φ(n))) ≥ 1, i.e., φ(φ(n)) is even and thus
cannot divide n.

Now that we’ve shown that n is even, we show that n is divisible by at most one odd
prime. We use the following lemma:

Lemma 2: If φ(n) = 2d for some positive integer d, then we must have n is a product
of a power of 2 and distinct Fermat primes, i.e., primes of the form 2k + 1.

Proof of Lemma 2: if an odd prime q divides n, then φ(q) = q − 1 divides φ(n) = 2d.
This implies that q = 2k+1 for some positive integer k. Moreover, if q2 | n, then q | φ(n),
which cannot be; this means that vq(n) ≤ 1, and any Fermat prime can appear at most
once in the factorization of n. 2

Write v2(n) = a. If n is divisible by at least two odd primes, say, p, q then φ(pq) | φ(n)
and v2(φ(n)) = v2(n)−1+v2(φ(pq)) ≥ v2(φ(n))+1. On one hand, if φ(pq) is not a power
of 2, we write φ(pq) = 2cm for some odd m > 1. We note that φ(pq) = (p − 1)(q − 1)
which is the product of two even numbers and thus divisible by 4; we then have c =
v2(φ(pq)) ≥ 2, and so 2a+1m divides φ(n). Then, we get in turn φ(2a+1)φ(m) = 2aφ(m)
must divide φ(φ(n)). However, since m is odd and m > 1, φ(m) is even, and so
v2(φ(m) ≥ 1; this means that 2a+1 divides φ(φ(n)), which then precludes the possibility
of φ(φ(n)) dividing n. On the other hand, if φ(pq) is a power of 2, we must have that



in fact p ≥ 3 = 2 + 1 and q ≥ 5 = 22 + 1, so v2(φ(pq)) ≥ 3 and so v2(φ(n)) ≥ v2(n) + 2.
From Lemma 1 we then have v2(φ(φ(n))) ≥ v2(n) + 1, and so φ(φ(n)) cannot divide n.

Thus, we have either n = 2a, which indeed satisfies the condition, or n = 2apb for some
odd prime p. Now, if p = 3, then we also have that n satisfies the condition. Thus, we
look at all primes p > 3; we show that p ∈ {5, 7} and b = 1.

First, suppose p > 7. Then either φ(p) = 2c for some c ≥ 3, or φ(p) = 2cm for some c ≥ 1
and odd m ≥ 5. In the former case, we then have v2(φ(n)) ≥ v2(n)− 1 + c ≥ v2(n) + 2.
Thus, v2(φ(φ(n))) ≥ v2(n) + 1 > v2(n), and so φ(φ(n)) cannot divide n. In the latter
case, we write φ(n) = 2a+c−1m, so φ(φ(n)) = 2a+c−2φ(m). If φ(m) has at least one odd
prime factor q, then q < p so q ∤ n, but q | φ(φ(n)). Thus n cannot satisfy the condition.
We must then have φ(m) = 2d for some d, and so by Lemma 2 and the assumption that
m is odd we have that m is a product of distinct Fermat primes. Then the condition
m ≥ 5 tells us that there exists at least one odd q = 2k + 1 with k ≥ 2 dividing m, and
so 4 | 2k | φ(m). This means that v2(φ(φ(n))) ≥ a+ c > a, so φ(φ(n)) cannot divide n.

To finish off the proof, we look at n = 2apb. We know that for b = 1, n satisfies the
desired condition. However, if n = 2a5b for b ≥ 2, then φ(φ(n)) = 2a+25b−2 which does
not divide n; if n = 2a7b for b ≥ 2, we have φ(φ(n)) = 2a+17b−23 which also cannot
divide n. Thus, the only n that satisfy the property are given in the table above. ■


